ANALYSIS QUALIFYING EXAM FALL 2003

Directions. Each problem is worth 10 points. A complete solution to one problem is worth more than two half-solutions to two problems. You are to solve any 10 problems.

Problem 1. Let μ be a finite Borel measure on [0,1]. Suppose that

$$f:[0,1]\times[0,1]\to\mathbb{R}$$

is a Borel function, such that for each x, the map $t\mapsto f(x,t)$ is differentiable, and that $\left|\frac{\partial f}{\partial t}(x,t)\right|\leq g(x)$ for some Borel function g(x) satisfying $\int_0^1 g(x)d\mu(x)<\infty$.

Carefully prove that $F(t) = \int_0^1 f(x,t) d\mu(x)$ satisfies

$$F'(t) = \int_0^1 \frac{\partial f}{\partial t}(x, t) d\mu(x).$$

Problem 2. Let μ be a positive Borel measure on the unit interval I = [0, 1], such that $\mu(I) = 1$. Let $\xi_n(x) = x^n$, n = 0, 1, 2, ...

- (a) Let H be the Hilbert space $L^2([0,1],\mu)$. Show that $\xi_n \to 0$ in norm if and only if $\mu(\{1\}) = 0$.
- (b) Let H be as in part (a). Show that if $f \perp \xi_n$ for all n, then f must be a.e. zero.
- (c) Let V be the Banach space $L^{\infty}([0,1],\mu)$. Show that $\xi_n \to 0$ in norm if and only if for some $\varepsilon > 0$, $\mu([1-\varepsilon,1]) = 0$.

Problem 3. Let $f \in L^1(\mathbb{R})$. Define its Fourier transform by the formula

$$\hat{f}(t) = \int_{-\infty}^{\infty} f(x)e^{2\pi i(xt)}dx.$$

Assume that both $f \in L^1(\mathbb{R})$ and $\hat{f} \in L^1(\mathbb{R})$. Show that

$$f(x) = \int_{-\infty}^{\infty} \hat{f}(t)e^{-2\pi i(xt)}dt \qquad x \text{ a.e.}$$

Problem 4. Let H be a Hilbert space. Show that the unit sphere $S = \{\xi \in H : \|\xi\| = 1\}$ is compact (in the norm topology) if and only if H is finite-dimensional.

Problem 5. Let H be a Hilbert space. A sequence $\xi_n \in H$ is said to converge weakly to ξ if for all $\zeta \in H$, $\langle \xi_n, \zeta \rangle \to \langle \xi, \zeta \rangle$.

- (a) Show that $||\xi|| \le \limsup_n ||\xi_n||$;
- (b) Give an example in which the inequality in (a) is strict;
- (c) Show that if $\|\xi\| = \lim_n \|\xi_n\|$, then $\|\xi \xi_n\| \to 0$.

Problem 6. We let $\ell^p = L^p(\mathbb{N})$, where \mathbb{N} has the usual counting measure, and we let $L^p = L^p([0,1])$ where [0,1] has the usual Lebesgue measure. Show that $\ell^1 \subsetneq \ell^2 \colon \subsetneq \ell^\infty$, and that $L^1 \supsetneq L^2 \supsetneq L^\infty$.

Problem 7. Define the Haar functions on [0,1] by

$$e_0(x) = 1,$$

$$e_{n,k}(x) = \begin{cases} 2^{\frac{n}{2}}, & \text{if } \frac{k-1}{2^n} \le x < \frac{k-\frac{1}{2}}{2^n} \\ -2^{\frac{n}{2}}, & \text{if } \frac{k-\frac{1}{2}}{2^n} \le x < \frac{k}{2^n} \\ 0, & \text{otherwise.} \end{cases}$$

Show that these form an orthonormal basis for $L^2[0,1]$.

Problem 8. Let I = [-1, 1] be the closed unit interval in \mathbb{R} . Let $U = \mathbb{C} \setminus I$.

- (a) Show that there exists a non-constant bounded analytic function on U.
- (b) Prove that if f(z) is bounded and analytic on U and if f has a continuous extension to \mathbb{C} , then f must be constant.

Problem 9. Let $A = \{z : \text{Im}z > 0\} \setminus \{z : \text{Re}z = 0 \text{ and } 0 \leq \text{Im}z \leq 1\}$. Find a conformal map that maps A one-to-one onto the upper half place $\{z : \text{Im}z > 0\}$, or show that no such map exists.

Problem 10. Use a contour integral to evaluate

$$\int_0^\infty \frac{1}{1+x^{2n}} dx, \qquad n \ge 1.$$

Problem 11. Let $p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$ be a complex polynomial. Show that there must be at least one point with |z| = 1 and $|p(z)| \ge 1$. (Hint: count zeros of $a_{n-1}z^{n-1} + \cdots + a_0$).

Problem 12. Let D be the open unit disk in the complex plane. Endow D with the Lebesgue measure λ . Let $A \subset L^2(D,\lambda)$ be the subspace consisting of those L^2 functions, which are analytic on the disk.

- (a) Show that A is infinite-dimensional.
- (b) Show that A is a closed subspace of $L^2(D,\lambda)$.