

• UCLA Department of Mathematics • Graduate Analysis Exam Winter 2004

No Smoking No Drinking

There are altogether twelve porblems – six from "real analysis" and six from "complex analysis". Attempt all problems. Start each problem on a new page. Be sure to label your problems.

Let $f: \mathbb{R}^n \to [0,B]$ denote a bounded function about which you may make no additional assumptions. For any $\varepsilon > 0$, let us define $\phi_{\varepsilon}(x)$ by

$$\phi_{\varepsilon}(x) = \sup_{y:|x-y|<\varepsilon} f(y).$$

- (a) Show that the $\varepsilon \rightarrow 0$ limit of $\phi_{\varepsilon}(x)$ exists.
- (b) Denoting this limit by $\phi(x)$, show that ϕ is upper-semicontinuous.

Let $f: [0,1] \rightarrow (0,1)$ be a function of class \mathcal{C}^1 – that is to say both f and f' are continuous functions – with

$$\max_{0 \le x \le 1} |f'(x)| \le 1 - \varepsilon$$

for some $\varepsilon > 0$.

(a) Show that there is exactly one solution to the equation

$$f(x^*) = x^*.$$

(b) Let x_0 denote any point in [0,1]. Define $x_1 = f(x_0)$ and, in general,

$$\mathbf{x}_{\mathbf{n}+\mathbf{1}} = \mathbf{f}(\mathbf{x}_{\mathbf{n}}).$$

Show that regardless of the choice of x_o, we have

$$\lim_{n\to\infty} x_n = x^*.$$

[A3] ----

Let $f:[0,1] \rightarrow [0,1]$ denote a Borel function and consider the subset of the square, A_f , defined by

$$A_{\rm f} = \{(x,y) \in [0,1] | y \le f(x)\}.$$

Show that A_f is a Borel set and that in fact,

$$m_2(A_f) = \int_{[0,1]} f(x) dm_1$$

where m₁ and m₂ denote one and two dimensional Lebesgue measure respectively.

[A4] -

Let $\langle \mathbf{X}, \mu, \mathcal{B} \rangle$ denote a finite measure space and let $f \in L^{\infty}(d\mu)$. Define

$$\alpha_n \; = \; \int\limits_{\mathbf{X}} |f|^n d\mu \; .$$

Show that

$$\lim_{n\,\to\,\infty}\,\frac{\alpha_{n+1}}{\alpha_n}\ =\ \|f\|_{_\infty}\,.$$

[A5] -

Let μ denote a finite Borel measure supported on a countable set $\mathbb{Q} \subset \mathbb{R}$ and let

$$F(t) = \int_{-\infty}^{+\infty} e^{ixt} d\mu(x)$$

denote its Fourier transform. Show that

$$\lim_{T\to\infty} \ \frac{1}{2T} \int\limits_{-T}^{+T} |F(t)|^2 dt \ = \ \sum_{q\in Q} |\mu(q)|^2 \, .$$

[A6] -

Consider the Hilbert space ℓ^2 of all complex valued square-summable sequences. Let **T** be the operator that shifts the sequence to the right and places a zero in the first slot:

$$\mathbf{T}(\zeta_1,\zeta_2,\zeta_3,\dots) = (0,\zeta_1,\zeta_2,\zeta_3,\dots).$$

- (a) For any $\underline{a} \in \ell^2$, let $\underline{a}^{[n]} = \mathbf{T}^n \underline{a}$. Show that the $\underline{a}^{[n]}$ converge weakly to zero, i.e. that for any $\underline{b} \in \ell^2$, the numbers $\langle \underline{a}^{[n]} | \underline{b} \rangle$ converge to zero.
- (b) Compute the adjoint, T^* , of T and show that for any $\underline{a} \in \ell^2$, the vectors $[T^*]^n\underline{a}$ converge strongly (i.e. in norm) to zero.

1	CA	11
		11

Let f(z) = u(x,y) + iv(x,y) denote a non-constant analytic function on some open domain $D \subset \mathbb{C}$. Show that at each point of D, the "level curves" u(x,y) = constant and v(x,y) = constant intersect at right angles.

[CA 2] -

Let K(z) denote a real-valued function of the complex variable z defined in some open domain $D \subset \mathbb{C}$. Then K(z) is said to be *strictly* subharmonic if the inequality

$$K(z_o) < \frac{1}{2\pi} \int_0^{2\pi} K(z_o + \rho e^{i\phi}) d\phi$$

holds for all ρ which are smaller than the distance from z_0 to the boundary of D. Let f(z) denote a non-constant analytic function on D. Show that |f(z)| is strictly subharmonic.

A function f(z) is entire and has the property that for some fixed $\lambda > 0$, the inequality

$$|\text{Re}[f(z)]| \ge \lambda |\text{Im}[f(z)]|$$

holds for all $z \in \mathbb{C}$. Show that this function must be a constant.

[CA 4] -

A bounded harmonic function $\Phi(x,y)$ is defined in the region of the plane $x^2 \ge y^2 + 1$. The function Φ satisfies the boundary condition that for $x^2 - y^2 = 1$ with y > 0, $\Phi = 0$ while for $x^2 - y^2 = 1$ with y < 0, $\Phi = 1$. Find this function. You may express your answer in terms real and/or imaginary parts of well known analytic functions.

[CA 5] -

Using contour (or any other) methods, compute the integral

$$\int_{0}^{\infty} \frac{x dx}{1 + x^3}.$$

Hint: Find a "path of return" where you compute an integral related to the one you want.

[CA 6] -

Let f(z) denote a function which is analytic at all points on a simple closed curve, γ , and everywhere inside γ except for the (isolated) points $b_1, b_2, \ldots b_r$ where it has poles of order $\beta_1, \beta_2, \ldots \beta_r$. Furthermore, f does not vanish on γ but does have zeros at the points $a_1, a_2, \ldots a_s$ which are inside γ and these zeros are of multiplicity $\alpha_1, \alpha_2, \ldots \alpha_s$. Then, according to a well known formula,

$$\frac{1}{2\pi i} \oint\limits_V \frac{f'(z)}{f(z)} \mathrm{d}z \quad = \ \sum\limits_{k=1}^s \alpha_k \ - \sum\limits_{k=1}^r \beta_k \ .$$

Now suppose that g(z) is analytic inside and on γ . What is the generalization of the above formula when the integrand on the left hand side is replaced by $g(z) \frac{f'(z)}{f(z)}$? Provide justification for your answer.