Analysis Qualifying exam Fall 2005

Answer all questions.

- R1 Suppose that f is a bounded function on [a,b] which is Riemann integrable.
 - a) Prove that f is a Lebesgue measurable function.
 - b) Must f be a Borel measurable function? Prove your assertion.
- R2 Let X be a set with S a σ -algebra of sets in X, and F a signed measure on S with $F(S) > -\infty$ for all $S \in S$. A subset $B \in S$ is said to be purely positive if $F(C) \geq 0$ for all $C \in S$ with $C \subseteq B$, and purely negative if $F(C) \leq 0$ for all $C \in S$ with $C \subseteq B$. Prove that there exist $P, N \in S$ with $X = P \cup N$ and $P \cap N = \emptyset$, where P is purely positive and N is purely negative. Hint: Begin by showing that $\beta = \inf \{F(B) : B \text{ is purely negative}\} > -\infty$.
- R3 Consider real numbers $a_{n,m}$ for $n=1,2,\ldots$ and $m=1,2,\ldots$ and assume that the inner and outer sums in the expressions

$$A : = \sum_{n=1}^{\infty} \left[\sum_{m=1}^{\infty} a_{n,m} \right]$$
$$B : = \sum_{m=1}^{\infty} \left[\sum_{n=1}^{\infty} a_{n,m} \right]$$

are absolutely convergent.

- a) Give an example that shows that we may have $A \neq B$.
- b) Under what reasonable additional assumption on $a_{n,m}$ can we conclude that A = B? Prove your assertion.
- R4 Suppose that V is a complex normed space and that $f:V\to\mathbb{C}$ is a linear functional.
 - a) Prove that if V is finite-dimensional, then f must be bounded.
 - b) Give an example of an unbounded linear functional on a normed vector space. Prove your assertion.

R5 (see hint below) If $f \in L^1(\mathbb{R})$, consider the Fourier transform

$$\widehat{f}(\alpha) = \frac{1}{\sqrt{2\pi}} \int f(x)e^{-ix\alpha} dx$$

and the inverse Fourier transform

$$\check{f}(x) = \frac{1}{\sqrt{2\pi}} \int f(x)e^{ix\alpha}d\alpha$$

(you may use any of the alternative standard definitions for the Fourier transform and its inverse).

(a) Let $A(\mathbb{R})$ be the image of the mapping $f \mapsto \widehat{f}$. Does one have that $A(\mathbb{R}) \subseteq L^1(\mathbb{R})$ or $A(\mathbb{R}) \supseteq L^1(\mathbb{R})$? Fully prove your assertions.

(b) Prove that

$$f, g \in L^2(\mathbb{R}) \Longrightarrow (\hat{f}\hat{g}) = f * g.$$

Hint: Let $h(y) = \overline{g(x-y)}$ and observe that $\hat{h}(\alpha) = \overline{\hat{g}(\alpha)}e^{-2\pi i\alpha}$. Then use the fact that $f \mapsto \hat{f}$ uniquely determines an isometry of $L^2(\mathbb{R})$ onto itself (the Plancherel theorem).

- C1 Suppose that f(z) is analytic and non-constant on a connected open set G in the complex plane. Prove that f(G) is an open subset of the complex plane.
- C2 Find an explicit conformal mapping from the upper half-plane slit along the vertical segment

$$\{z\in\mathbb{C}:\operatorname{Im}z>0\}\backslash(0,i]$$

to the unit disk $\{z \in \mathbb{C} : |z| < 1\}.$

C3 Consider the meromorphic function

$$f(z) = \frac{(1-z^2)}{2i(z^2 - (a + \frac{1}{a})z + 1)}, |a| < 1.$$

Find the Laurent series expansion for f(z) valid in a neighborhood of the unit circle |z| = 1.

C4 Using the residue calculus, evaluate the integral

$$\int_0^\infty \frac{\log x}{(x^2+1)^2} dx.$$

Hint: Use the positively oriented contour $\Gamma_{r,R}$ 0 < r < 1 < R consisting of the line segment [r,R], followed by the arc $\Gamma_{r,R} = \{z = Re^{i\varphi} : 0 \le \varphi \le \pi\}$, the segment -R,-r], and finally completed by the arc

$$\Gamma_r = \left\{ z = re^{i\varphi} : 0 \le \varphi \le \pi \right\}.$$

Include a proof of the limiting arguments.

C5 Let $J \subseteq \mathbb{R}$ be a compact interval, and let μ be a measure on the real line whose support lies in J. For $z \in \mathbb{C} \setminus J$, define

$$C_{\mu}(z) = \int_{\mathbb{R}} \frac{d\mu(t)}{z - t}.$$

- a) Prove that $C_{\mu}(z)$ is analytic on $\mathbb{C}\backslash J$.
- b) Find a power series expansion for $C_{\mu}(z)$ at ∞ in terms of the moments $m_k = \int_{\mathbb{R}} t^k d\mu(t)$.
- c) Show that the mapping $\mu \mapsto C_{\mu}(z)$ is one-to-one (Hint: use the Stone-Weierstrass theorem to prove that the moments m_k determine μ).