ANALYSIS QUALIFYING EXAMINATION

March 31, 2007

Instructions: Solve any 10 problems and therefore at least 4 from Problems 1–6 and at least 4 from Problems 7–12. All problems are worth the same amount. Turn in only the 10 problems you want us to grade.

Notation: Throughout, $L^p(A)$ denotes the standard L^p space defined relative to the Lebesgue measure on A and $||f||_p$ denotes the corresponding norm.

Problem 1. Let $f_n : \mathbb{R} \to \mathbb{R}$ be non-negative integrable functions with $||f_n||_1 = 1$. Suppose $f_n \to f$ pointwise a.e. with $||f||_1 = 1$. Show that

$$\int_{A} f_{n}(x) dx \xrightarrow[n \to \infty]{} \int_{A} f(x) dx$$

uniformly in the choice of Borel set $A \subset \mathbb{R}$. Hint: First prove that $f_n \to f$ in L^1 .

Problem 2. Consider the function $f:(0,\infty)\times(0,\infty)\to\mathbb{R}$ defined by

$$f(x, y) = \sum_{n=0}^{\infty} \frac{\dot{x}}{x^2 + yn^2}$$

Show that the limit $g(y) := \lim_{x \to \infty} f(x, y)$ exists for all y > 0 and compute g(y).

Problem 3. Let $f * g(x) = \int_{\mathbb{R}} f(x - y)g(y) dy$ denote the convolution of f and g. Fix $g \in L^1(\mathbb{R})$. Do the following:

- (1) Show that $A_g(f) := f * g$ is a bounded operator $L^1(\mathbb{R}) \to L^1(\mathbb{R})$.
- (2) Suppose in addition $g \ge 0$. Find the corresponding norm $||A_g||$.
- (3) Show that the only $f \in L^1(\mathbb{R})$ for which f * f = f is f = 0.

Problem 4. Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and let $T: L^2([0,1]) \to L^2([0,1])$ be defined by

$$(Tf)(x) = f(x + \alpha \bmod 1).$$

Denote $S_n f = f + Tf + T^2 f + \cdots + T^{n-1} f$. Do the following:

- (1) For any $f \in L^2([0, 1])$, prove that $\frac{1}{n}S_n f$ converges in L^2 . Identify the limit.
- (2) Suppose $f: [0, 1] \to \mathbb{R}$ is continuous with f(1) = f(0). Show that the convergence in (1) is uniform.

Problem 5. Let $A_n(f) = \frac{1}{n} \int_0^n f(x) dx$. Show that there exists a continuous linear functional $A: L^{\infty}(\mathbb{R}_+) \to \mathbb{R}$ such that

$$A(f) = \lim_{n \to \infty} A_n(f)$$

whenever the limit exists. Here $\mathbb{R}_+ = (0, \infty)$.

Problem 6. Let X be a Banach space and let $A: X \to X$ be a linear map. Define

$$\varrho(A) = \{ \lambda \in \mathbb{C} : (\lambda - A) \text{ maps } X \text{ onto } X \}$$

Show that $\varrho(A)$ is an open subset of \mathbb{C} .

Problem 7. Use contour integration to evaluate the integral

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{\tan\theta + \mathrm{i}a}$$

where $a \in (0, \infty)$.

Problem 8. Determine the number of zeros of the polynomial

$$p(z) = z^4 + z^3 + 4z^2 + 2z + 3$$

in the right half-plane $\{z : Rez > 0\}$.

Problem 9. Let f(z) be analytic for 0 < |z| < 1. Suppose there are C > 0 and $m \ge 1$ such that

$$|f^{(m)}(z)| \le \frac{C}{|z|^m}, \qquad 0 < |z| < 1.$$

Show that f(z) has a removable singularity at z = 0.

Problem 10. Let $J = \{iy : 1 \le y < \infty\}$ and let $\mathbb{H} = \{z : Imz > 0\}$ be the open upper half plane. Consider the domain $D = \mathbb{H} \setminus J$. Find a bounded harmonic function $u : D \to \mathbb{R}$ such that $u(x + iy) \to 0$ as $y \downarrow 0$ and $u(z) \to 1$ as $z \to J$. It is fine to represent to solution in terms of a composition of conformal maps.

Problem 11. Prove that a meromorphic function f(z) in the extended complex plane $\mathbb{C}^* = \mathbb{C} \cup \{\infty\}$ is the sum of the principal parts at its poles.

Problem 12. Let D be a domain (connected open set) in \mathbb{C} and let (u_n) be a sequence of harmonic functions $u_n \colon D \to (0, \infty)$. Show that if $u_n(z_0) \to 0$ for some $z_0 \in D$, then $u_n \to 0$ uniformly on compact subsets of D.