Analysis Qualifying Examination

Wednesday, September 17, 2008 9am-1pm

Instructions: Work any 10 problems. To pass the exam, you must show a satisfactory knowledge of both Real Analysis (Problems 1-6) and Complex Analysis (Problems 7-12). All problems are worth ten points; parts of a problem may not carry equal weight. You need to tell us which 10 problems you want us to grade. Great emphasis will be placed on your attention to detail.

- 1. Fix $1 \le p < \infty$ and let $\left\{f_n\right\}_{n=1}^{\infty}$ be a sequence of Lebesgue measurable functions $f_n:[0,1] \to \mathbb{C}$. Suppose there exists f in $L^p([0,1])$ so that $f_n \to f$ in the L^p sense, that is , $\left[\left|f_n(x) f(x)\right|^p dx \to 0\right.$
 - (a) Show that $f_n \to f$ in measure, that is, $\lim_{n \to \infty} \mu(\left\{x : \left|f_n(x) f(x)\right| \ge \varepsilon\right\}) = 0$ for all $\epsilon > 0$. (Here μ =Lebesgue measure.)
 - (b) Show that there is a subsequence f_{n_k} such that $f_{n_k}(x) \to f(x)$ almost everywhere.
- 2. Is every vector space isomorphic as a vector space to some Banach space? Prove your answer. (Banach space=complete normed vector space, as usual).
- 3. Prove: If $f:[0,1] \to \mathbb{R}$ is an arbitrary function, not necessarily measurable, then the set of points at which f is continuous is a Lebesgue-measurable set.

(Suggestion: for $x \in \mathbb{R}$, $\delta > 0$, set $S_x(\delta) = \sup\{|f(x_1) - f(x_2)| : |x_1 - x| < \delta, |x_2 - x| < \delta\}$.

Consider the function of $x \in \mathbb{R}$, $\omega(x) = \lim_{\delta \to 0^+} S_x(\delta)$. Caution: it might be $+\infty$ for some x values.)

4. Let X be a subset of $\ell^2(\mathbb{Z})$. Show that X is precompact (i.e., has compact closure) in the $\ell^2(\mathbb{Z})$ topology if and only if X is bounded and

$$\forall \varepsilon > 0, \exists N \ge 1 \text{ such that } \forall x \in X, \sum_{|n| \ge N} \left| x_n \right|^2 < \varepsilon$$

5. Let $d\mu$ be a finite positive Borel measure on $[0,2\pi]$ and suppose

$$\limsup_{n\to\pm\infty} \left| \int e^{in\theta} d\mu(\theta) \right| = 0.$$

Show that for any $f \in L^1(d\mu)$,

$$\lim \sup_{n \to +\infty} \left| \int e^{in\theta} f(\theta) d\mu(\theta) \right| = 0.$$

- 6. Define for each n= 1,2,3..., the Cantor-like set C_n as [0,1] with its central open interval of length $\frac{1}{2^n} \cdot \frac{1}{3}$ removed, then with the two central open intervals of length $\frac{1}{2^n} \cdot \frac{1}{3^2}$ removed from the remaining two closed intervals and so on(at the j^{th} stage, 2^{j-1} intervals of length $\frac{1}{2^n} \cdot \frac{1}{3^j}$ are removed), continuing with j=1,2,3...
 - (a) With μ = Lebesgue measure, show that $\mu([0,1] \bigcup_{n=1}^{+\infty} C_n) = 0$
 - (b) Show that if E is a subset of [0,1] which is not Lebesgue measurable (you may assume such an E exists without proof), then for some $n \ge 1$, $E \cap C_n$ fails to be Lebesgue measurable.
 - (c) Use part (b) to show that there is a continuous, strictly increasing function $f: \mathbb{R} \to \mathbb{R}$ with $f(\mathbb{R}) = \mathbb{R}$ and a Lebesgue measurable set $A \subset \mathbb{R}$ such that f(A) is not Lebesgue measurable.
- 7. If $h: \{z \in \mathbb{C}: 1 < |z| < 2\} \to \mathbb{R}$ is a continuous function, set for 1 < r < 2:

$$M_h(r) = \frac{1}{2\pi} \int_0^{2\pi} h(re^{i\theta}) d\theta$$

- (a) Show that if h= Re F, $F:\{z \in \mathbb{C}: 1 < |z| < 2\} \to \mathbb{C}$ holomorphic, then $M_h(r)$ is constant on $\{r: 1 < r < 2\}$.
- (b) Show that if h is a real-valued harmonic function on $\left\{z \in \mathbb{C} : 1 < \left|z\right| < 2\right\}$, then there are constants c_1 , $c_2 \in \mathbb{R}$ such that $M_h(r) = c_1 \ln r + c_2$ for all $r \in (1,2)$.

- 8. Suppose $f: \{z \in \mathbb{C}: 0 < |z| < 1\} \to \mathbb{C}$ is a holomorphic function with $\int_{U} |f|^2 < +\infty$ where $U = \{z \in \mathbb{C}: 0 < |z| < 1\}$ and the integral is the usual \mathbb{R}^2 area integral. Prove that f has a removable singularity at z=0.
- 9. Let $D:=\{z\in\mathbb{C}:|z|<1\}$ denote the open unit disk in the complex plane and let $H:=\{z\in\mathbb{C}:\operatorname{Im} z>0\}$ denote the upper half plane .
 - (a) Explicitly describe all conformal mappings g from H onto D that obey g(i)=0.
 - (b) Suppose f: D \rightarrow H has f(0) = i, f holomorphic. Show that $\text{Im } f(x) \ge \frac{1-x}{1+x}$ for all $x \in (0,1)$.
- 10. Suppose U is a bounded connected open set in \mathbb{C} and $z_0 \in U$. Let $F = \{f : U \to D, f \text{ holomorphic, } f(z_0) = 0\}$ where $D = \{z \in \mathbb{C} : |z| < 1\}$.
 - (a) Show that if K is a compact subset of U, then there is a constant $M_K>0$ such that $|f'(z)| \le M_K$ for all $z \in K$, $f \in F$
 - (b) Use part (a) to show that if $\{f_n : f_n \in F\}$ is a sequence in F, then there is a subsequence $\{f_{n_j}\}$ which converges uniformly on every compact subset of U to a function $f_0 \in F$.

(Note: Part of this is to show $f_0(U)\subset D.)$

- 11. Let $D:=\left\{z\in\mathbb{C}:\left|z\right|<1\right\}$ denote the open unit disk in the complex plane and let \overline{D} denote its closure. Suppose $f:D\to\mathbb{C}$ is continuous on \overline{D} and analytic (holomorphic) in its interior. Show that if f takes only real values on $\partial\overline{D}:=\left\{z:\left|z\right|=1\right\}$, then f must be constant.
- 12. Evaluate $\int_{0}^{\pi} \frac{d\theta}{a^2 + \sin^2 \theta}$ for all real numbers a>0.