Instructions: Attempt ten of the thirteen questions, including at least three from Q9-13. Each question is worth 10 points.

Q1. Let $S^1:=\{z\in \mathbf{C}:|z|=1\}$ denote the unit circle. Show that there exists a measurable function $f:S^1\to S^1$ whose Fourier coefficients $\hat{f}(n):=\frac{1}{2\pi}\int_0^{2\pi}f(e^{2\pi i\theta})e^{-2\pi i\theta n}\;d\theta$ are non-zero for every integer $n\in \mathbf{Z}$. (Hint: use the Baire category theorem.)

Q2. Let \mathbf{R}/\mathbf{Z} be the unit circle with the usual Lebesgue measure. For each $n=1,2,3,\ldots$, let $K_n:\mathbf{R}/\mathbf{Z}\to\mathbf{R}^+$ be a non-negative integrable function such that $\int_{\mathbf{R}/\mathbf{Z}} K_n(t) \ dt = 1$ and $\lim_{n\to\infty} \int_{\varepsilon \le |t| \le 1/2} K_n(t) \ dt = 0$ for every $0 < \varepsilon < 1/2$, where we identify \mathbf{R}/\mathbf{Z} with (-1/2,1/2] in the usual manner. (Such a sequence of K_n are known as approximations to the identity.) Let $f:\mathbf{R}/\mathbf{Z}\to\mathbf{R}$ be continuous, and define the convolutions $f*K_n:\mathbf{R}/\mathbf{Z}\to\mathbf{R}$ by

$$f * K_n(x) := \int_{\mathbf{R}/\mathbf{Z}} f(x-t)K_n(t) dt.$$

Show that $f * K_n$ converges uniformly to f.

Q3. Let X be a compact metric space.

- (a) Show that X is separable (i.e. it has a countable dense subset).
- (b) Show that X is second countable (i.e. there exists a countable base for the topology).
- (c) Show that C(X) (the space of continuous functions $f: X \to \mathbf{R}$ with the uniform topology) is separable. (Hint: use part (b), Urysohn's lemma and the Stone-Weierstrass theorem.)

Q4. Let $f,g\in L^2(\mathbf{R})$ be two square-integrable functions on \mathbf{R} (with the usual Lebesgue measure). Show that the convolution

$$f * g(x) := \int_{\mathbf{R}} f(y)g(x - y) \ dy$$

of f and g is a bounded continuous function on \mathbf{R} .

Q5. Let H be a Hilbert space, and let $T: H \to H$ be a bounded linear operator on H.

- Show that if the operator norm ||T|| of T is strictly less than 1, then the operator 1-T is invertible.
- Let $\sigma(T)$ denote the set of all complex numbers z such that T zI is not invertible. (This set is known as the *spectrum* of T.) Show that $\sigma(T)$ is a compact subset of \mathbb{C} .

Q6. Let μ_n be a sequence of Borel probability measures on [0,1], thus each μ_n is a non-negative finite measure on the Borel σ -algebra of [0,1] (the σ -algebra generated by the open sets in [0,1]) with $\mu_n([0,1]) = 1$. Show that there exists a subsequence μ_{n_j} , as well as another Borel probability measure μ , such that $\lim_{j\to\infty} \int_{[0,1]} f(x) \ d\mu_{n_j}(x) = \int_{[0,1]} f(x) \ d\mu(x)$ for all continuous functions $f:[0,1]\to \mathbf{R}$. (Hint: use the Riesz representation theorem and Q3.)

Q7. Let $u: \mathbf{R}^2 \to \mathbf{R}$ be a bounded smooth function, and suppose that the Laplacian $\Delta u(x,y):=\frac{\partial^2 u}{\partial x^2}(x,y)+\frac{\partial^2 u}{\partial y^2}(x,y)$ of u is rotationally symmetric, which means that $\Delta u(R_{\theta}(x,y))=\Delta u(x,y)$ for any rotation $R_{\theta}:(x,y)\mapsto (x\cos\theta-y\sin\theta,x\sin\theta+y\cos\theta)$. Show that u is also rotationally symmetric. (Hint: You may use without proof the fact that the Laplacian Δ commutes with all rotations R_{θ} .)

Q8. Let H be a real Hilbert space, let K be a closed non-empty subset of H, and let v be a point in H. Show that there exists a unique $w \in K$ which minimizes the distance to v in the sense that $\|v-w\| < \|v-w'\|$ for all $w' \in K \setminus \{w\}$. (Hint: you may find the parallelogram law $\frac{\|a\|^2 + \|b\|^2}{2} = \|\frac{a+b}{2}\|^2 + \|\frac{a-b}{2}\|^2$ to be useful.)

Q9. Show using the residue theorem that

$$\int_0^\infty \frac{\log^2 x}{1 + x^2} = \frac{\pi^3}{8}.$$

Q10. Let the power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ have radius of convergence r > 0. For each ρ with $0 < \rho < r$ let $M_f(\rho) := \sup\{|f(z)|; |z| = \rho\}$. Show that the following holds for each such ρ :

$$\sum_{n=0}^{\infty} |a_n|^2 \rho^{2n} \le M_f(\rho)^2.$$

Q11. Let $\mathbb{D}:=\{z;|z|<1\}$ be the unit disc. Let $f:\mathbb{D}\to\mathbb{D}$ be a holomorphic map having 2 unequal fixed points $a,b\in\mathbb{D}$. Show that f(z)=z for all $z\in D$. (Hint: use Schwartz's lemma.)

Q12. Consider the annulus $A := \{z \in \mathbf{C} : r < |z| < R\}$, where 0 < r < R. Show that the function f(z) := 1/z cannot be uniformly approximated in A by complex polynomials.

Q13. Let $\Omega \subset \mathbf{C}$ be an open set containing the closed unit disk $\overline{\mathbb{D}} := \{z \in \mathbf{C} : |z| \leq 1\}$, and let $f_n : \Omega \to \mathbf{C}$ be a sequence of holomorphic functions on Ω which converge uniformly on compact subsets of Ω to a limit $f: \Omega \to \mathbf{C}$. Suppose that $|f(z)| \neq 0$ whenever |z| = 1. Show that there is a positive integer N such that for $n \geq N$, the functions f_n and f have the same number of zeros in the unit disk $\mathbb{D} := \{z \in \mathbf{C} : |z| < 1\}$.