Analysis Qualifying Examination - March 26, 2009

Instructions:

Work any 10 problems and therefore at least 4 from Problems 1 - 6 and at least 4 from Problems 7 - 12. All problems are worth ten points. Full credit on one problem will be better than part credit on two problems.

1. Let f and g be real-valued integrable functions on a measure space (X, \mathcal{B}, μ) , and define

$$F_t = \{x \in X : f(x) > t\}, G_t = \{x \in X : g(x) > t\}.$$

Prove

$$\int |f - g| d\mu = \int_{-\infty}^{\infty} \mu \big((F_t \setminus G_t) \cup (G_t \setminus F_t) \big) dt.$$

- 2. Let H be an infinite dimensional real Hilbert space.
- a) Prove the unit sphere $S = \{x \in H : ||x|| = 1\}$ of H is weakly dense in the unit ball $B = \{x \in H : ||x|| \le 1\}$ of H. (i.e. if $x \in B$, there is a sequence $\{x_n\} \in S$ such that for all $y \in H$, $\langle x, y \rangle = \lim \langle x_n, y \rangle$.)
- b) Prove there is a sequence T_n of bounded linear operators from H to H such that $||T_n|| = 1$ for all n but $\lim T_n(x) = 0$ for all $x \in H$.
- 3. Let X be a Banach space and let X^* be its dual Banach space. Prove that if X^* is separable then X is separable.
- 4. Let f(x) be a non-decreasing function on [0,1]. You may assume the theorem that f is differentiable almost everywhere.
 - a) Prove that $\int_0^1 f'(x) dx \le f(1) f(0)$.

Hint: Fatou.

b) Let $\{f_n\}$ be a sequence of non-decreasing functions on the unit interval [0,1], such that the series $F(x) = \sum_{n=1}^{\infty} f_n(x)$ converges for all $x \in [a,b]$. Prove that $F'(x) = \sum_{n=1}^{\infty} f'_n(x)$ almost everywhere on [0,1].

Hint: Let $r_n(x) = \sum_{k \geq n} f_k(x)$. It is enough to show $r'_n(x) \to 0$ a.e. Take a subsequence r_{n_j} such that $r_{n_j}(1) - r_{n_j}(0) \to 0$ and use part (a).

5. Let $I=I_{0,0}=[0,1]$ be the unit interval, and for $n=0,1,2,\ldots$, and $0\leq j\leq 2^n-1$ let

$$I_{n,j} = [j2^{-n}, (j+1)2^{-n}].$$

For $f \in L^1(I,dx)$ define $E_n f(x) = \sum_{j=0}^{2^n-1} \left(2^n \int_{I_{n,j}} f dt\right) \chi_{I_{n,j}}$.

Prove that if $f \in L^1(I, dx)$ then $\lim_{n\to\infty} E_n f(x) = f(x)$ almost everywhere on I.

- 6. For $I_{n,j}$ as in Problem 5, define the Haar function $h_{n,j} = 2^{n/2} \left(\chi_{I_{n+1,2j}} \chi_{I_{n+1,2j+1}} \right)$.
 - a) Carefully draw $I_{2,1}$ and graph $h_{2,1}$.
 - b) Prove that if $f \in L^2(I)$ with respect to Lebesgue measure and $\int_I f dt = 0$, then

$$\int_{I} |f(x)|^{2} dx = \sum_{n,j} |\int f(t) h_{n,j}(t) dt|^{2}.$$

c) Prove that if $f \in L^1(I)$ and $\int_I f(t)dt = 0$, then almost everywhere on I,

$$f(x) = \sum_{n=1}^{\infty} \sum_{j=0}^{2^{n}-1} \left(\int f(t) h_{n,j}(t) dt \right) h_{n,j}(x).$$

Hint: Compare the *n*-th partial sum to $E_n f$ from Problem 5.

- 7. Let μ be a finite positive Borel measure on the complex plane \mathbb{C} .
- a) Prove that $F(z) = \int_{\mathbb{C}} \frac{1}{z-w} d\mu(w)$ exists for almost all $z \in \mathbb{C}$ and that $\int_K |F(z)| dx dy < \infty$ for every compact $K \subset \mathbb{C}$.
- b) Using (a), prove that for almost every horizontal line L (almost everywhere measured by y intercept), and all compact $K \subset L$, $\int_K |F(x+iy)| dx < \infty$.
- c) By "almost all squares in \mathbb{C} " we mean all squares in \mathbb{C} with sides parallel to the axes except for those squares whose lower left and upper right vertices (z_1, z_2) belong to a Lebesgue measure zero subset of \mathbb{C}^2 . Prove that for almost all open squares S,

$$\mu(S) = \frac{1}{2\pi i} \int_{\partial S} F(z) dz.$$

Hint: Use b) and the analogous result for vertical lines.

8. Let f be an entire non-constant function that satisfies the functional equation

$$f(1-z) = 1 - f(z)$$

for all $z \in \mathbb{C}$. Show that $f(\mathbb{C}) = \mathbb{C}$.

9. Let f(z) be an analytic function on the entire complex plane \mathbb{C} and assume $f(0) \neq 0$. Let $\{a_n\}$ be the zeros of f, counted with their multiplicities.

a) Let R > 0 be such that |f(z)| > 0 on |z| = R. Prove

$$\frac{1}{2\pi} \int_0^{2\pi} \log|f(Re^{i\theta})| d\theta = \log|f(0)| + \sum_{|a_n| \le R} \log(\frac{R}{|a_n|}).$$

b) Assume $|f(z)| \leq Ce^{|z|^{\lambda}}$ for positive constants C and λ . Prove that

$$\sum \left(\frac{1}{|a_n|}\right)^{\lambda+\epsilon} < \infty$$

for all $\epsilon > 0$.

Hint: Estimate $\#\{n: |a_n| < R\}$ by using (a) for the circle of radius 2R.

10. Let \mathbb{D} be the open unit disc and μ be Lebesgue measure on \mathbb{D} . Let H be the subspace of $L^2(\mathbb{D}, \mu)$ consisting of holomorphic functions. Show that H is complete.

11. Suppose that $f: \mathbb{D} \to \mathbb{C}$ is holomorphic and injective in some annulus $\{z: r < |z| < 1\}$, where \mathbb{D} is the open unit disc. Show that f is injective in \mathbb{D} .

12. Let Q be the closed unit square in the complex plane $\mathbb C$ and let R be the closed rectangle in $\mathbb C$ with vertices $\{0,2,i,2+i\}$. Prove there does *not* exist a surjective homeomorphism $f:Q\to R$ that is conformal on the interior Q^o and that maps corners to corners.