ANALYSIS QUAL: MARCH 24, 2010

Answer at most 10 questions, including at least 4 even numbered questions. On the front of your paper indicate which 10 problem you wish to have graded.

Problem 1. (a) Let $1 \leq p < \infty$. Show that if a sequence of real-valued functions $\{f_n\}_{n\geq 1}$ converges in $L^p(\mathbb{R})$, then it contains a subsequence that converges almost everywhere.

(b) Give an example of a sequence of functions converging to zero in $L^2(\mathbb{R})$ that does not converge almost everywhere.

Problem 2. Let p_1, p_2, \ldots, p_n be distinct points in the complex plane \mathbb{C} and let U be the domain

$$U = \mathbb{C} \setminus \{p_1, \ldots, p_n\}.$$

Let A be the vector space of real harmonic functions on U and let $B \subset A$ be the subspace of real parts of complex analytic functions on U. Find the dimension of the quotient vector space A/B, give a basis for this quotient space, and prove that it is a basis.

Problem 3. For an $f: \mathbb{R} \to \mathbb{R}$ belonging to $L^1(\mathbb{R})$, we define the Hardy-Littlewood maximal function as follows:

$$(Mf)(x) := \sup_{h>0} \frac{1}{2h} \int_{x-h}^{x+h} |f(y)| \, dy.$$

Prove that it has the following property: There is a constant A such that for any $\lambda > 0$,

$$\left|\left\{x \in \mathbb{R}: (Mf)(x) > \lambda\right\}\right| \le \frac{A}{\lambda} \|f\|_{L^1}$$

where |E| denotes the Lebesgue measure of E. If you use a covering lemma, you should prove it.

Problem 4. Let f(z) be a continuous function on the closed unit disk $\{z \in \mathbb{C} : |z| \le 1\}$ such that f(z) is analytic on the open disk $\{|z| < 1\}$ and $f(0) \ne 0$.

(a) Prove that if 0 < r < 1 and if $\inf_{|z|=r} |f(z)| > 0$, then

$$\frac{1}{2\pi} \int_0^{2\pi} \log|f(re^{i\theta})| d\theta \ge \log|f(0)|.$$

(b) Use (a) to prove that $\left|\left\{\theta\in[0,2\pi]:f(e^{i\theta})=0\right\}\right|=0$ where again |E| is the Lebesgue measure of E.

1

Problem 5. (a) For $f \in L^2(\mathbb{R})$ and a sequence $\{x_n\}_{n\geq 1} \subset \mathbb{R}$ which converges to zero, define

$$f_n(x) := f(x + x_n).$$

Show that $\{f_n\}_{n\geq 1}$ converges to f in L^2 sense.

(b)Let $W \subset \mathbb{R}$ be a Lebesgue measurable set of positive Lebesgue measure. Show that the set of differences

$$W - W = \{x - y : x, y \in W\}$$

contains an open neighborhood of the origin.

Problem 6. Let μ be a finite, positive, regular Borel measure supported on a compact subset of the complex plane $\mathbb C$ and define the Newtonian potential of μ to be

$$U_{\mu}(z) = \int_{\mathbb{C}} ig| rac{1}{z-w} ig| d\mu(w).$$

(a) Prove that U_{μ} exists at Lebesgue almost all $z \in \mathbb{C}$ and that

$$\int\int_K U_{\mu}(z) dx dy < \infty$$

for every compact $K \subset \mathbb{C}$. Hint: Fubini.

- (b) Prove that for almost every horizontal or vertical line $L \subset \mathbb{C}$, $\mu(L) = 0$ and $\int_K U_{\mu}(z) ds < \infty$ for every compact subset $K \subset L$, where ds denotes Lebesgue linear measure on L. Hint: Fubini and (a). (Here a. e. vertical line means the vertical lines through (x,0) for a.e. $x \in \mathbb{R}$. Likewise for horizontal lines.)
 - (c) Define the Cauchy potential of μ to be

$$S_{\mu}(z) = \int_{\Gamma} rac{1}{z-w} d\mu(w),$$

which trivially exists whenever $U_{\mu}(z) < \infty$. Let R be a rectangle in \mathbb{C} whose four sides are contained in lines L having the conclusions of (b). Prove that

$$\frac{1}{2\pi i} \int_{\partial R} S_{\mu}(z) dz = \mu(R).$$

Hint: Fubini and Cauchy.

Problem 7. Let H be a Hilbert space and let E be a closed convex subset of H. Prove that there exists a unique element $x \in E$ such that

$$||x|| = \inf_{y \in E} ||y||.$$

Problem 8. Let F(z) be a non-constant meromorphic function on the complex plane \mathbb{C} such that for all $z \in \mathbb{C}$,

$$F(z + 1) = F(z)$$
 and $F(z + i) = F(z)$.

Let Q be a square with vertices z, z + 1, z + i and z + (1 + i) such that F has no zeros and no poles on ∂Q . Prove that inside Q the function F has the same number of zeros as poles (counting multiplicities).

Problem 9. Let

$$A = \left\{ x \in \ell^2 : \sum_{n \ge 1} n |x_n|^2 \le 1 \right\}.$$

- (a) Show that A is compact in the ℓ^2 topology.
- (b) Show that the mapping from A to \mathbb{R} defined by

$$x \mapsto \int_0^{2\pi} \left| \sum_{n \ge 1} x_n e^{in\theta} \right| \frac{d\theta}{2\pi}$$

achieves its maximum on A.

Problem 10. Let $\Omega \subset \mathbb{C}$ be a connected open set, let $z_0 \in \Omega$, and let \mathcal{U} be the set of postive harmonic functions U on Ω such that $U(z_0) = 1$. Prove for every compact set $K \subset \Omega$ there is a finite constant M (depending on Ω, z_0 and K) such that

$$\sup_{U\in\mathcal{U}}\sup_{z\in K}U(z)\leq M.$$

You may use Harnack's inequality for the disk without proving it, provided you state it correctly.

Problem 11. Let $\phi: \mathbb{R} \to \mathbb{R}$ be a continuous function with compact support.

(a) Prove there is a constant A such that

$$\|f*\phi\|_{L^q} \leq A\|f\|_{L^p} \quad \text{for all} \quad 1 \leq p \leq q \leq \infty \quad \text{and all} \quad f \in L^p.$$

If you use Young's (convolution) inequality, you should prove it.

(b) Show by example that such a general inequality cannot hold for p > q.

Problem 12. Let F be a function from the open unit disk $\mathbb{D} = \{|z| < 1\}$ to \mathbb{D} such that whenever z_1, z_2 and z_3 are distinct points of \mathbb{D} there exists an analytic function f_{z_1, z_2, z_3} from \mathbb{D} into \mathbb{D} such that

$$F(z_j) = f_{z_1, z_2, z_3}(z_j), \ j = 1, 2, 3.$$

Prove that F is analytic at every point of \mathbb{D} .

Hint: Fix $z \in \mathbb{D}$ and let $\mathbb{D} \ni z_n \to z, z_n \neq z$. Show that the sequence

$$\frac{F(z_n) - F(z)}{z_n - z}$$

is bounded and then prove that every two of its convergent subsequences have the same limit.

Problem 13. Let X and Y be two Banach spaces. We say that a bounded linear transformation $A: X \to Y$ is *compact* if for every bounded sequence $\{x_n\}_{n\geq 1} \subset X$, the sequence $\{Ax_n\}_{n\geq 1}$ has a convergent subsequence in Y.

Suppose X is reflexive (that is, $(X^*)^* = X$) and X^* is separable. Show that a linear transformation $A: X \to Y$ is compact if and only if for every bounded sequence $\{x_n\}_{n\geq 1} \subset X$, there exists a subsequence $\{x_{n_j}\}$ and a vector $\phi \in X$ such that $x_{n_j} = \phi + r_{n_j}$ and $Ar_{n_j} \to 0$ in Y.