Analysis Qualifying Examination, March 2014

Instructions: Solve any 10 problems from the list of 12 below. Each problems is worth ten points; parts of a problem do not carry equal weight. You must tell us which 10 problems you want us to grade.

Problem 1: Consider a measure space (X, \mathcal{X}) with a sigma-finite measure μ and, for each $t \in \mathbb{R}$, let e_t denote the characteristic function of the interval (t, ∞) . Prove that if $f, g \colon X \to \mathbb{R}$ are \mathcal{X} -measurable, then $\|f - g\|_{L^1(X)} = \int_{\mathbb{R}} \|e_t \circ f - e_t \circ g\|_{L^1(X)} \, dt$.

Problem 2: Let $f \in L^1(\mathbb{R}, dx)$ and $\beta \in (0, 1)$. Prove that

$$\int_{\mathbb{R}} \frac{|f(x)|}{|x-a|^{\beta}} \, \mathrm{d}x < \infty$$

for (Lebesgue) a.e. $a \in \mathbb{R}$.

Problem 3: Let $[a,b] \subset \mathbb{R}$ be a finite interval and let $f:[a,b] \to \mathbb{R}$ be a bounded Borel measurable function.

- (1) Prove that $\{x \in [a, b] : f \text{ continuous at } x\}$ is Borel measurable.
- (2) Prove that f is Riemann integrable if and only if it is continuous almost everywhere.

Problem 4: (a) Consider a sequence $\{a_n: n \ge 1\} \subset [0,1]$. For $f \in C([0,1])$, let us denote

$$\varphi(f) = \sum_{n=1}^{\infty} 2^{-n} f(a_n).$$

Prove that there is no $g \in L^1([0,1], dx)$ such that $\varphi(f) = \int f(x)g(x) dx$ is true for all $f \in C([0,1])$.

(b) Each $g \in L^1([0,1], dx)$ defines a continuous functional T_g on $L^\infty([0,1], dx)$ by

$$T_g(f) = \int f(x)g(x) dx.$$

Show that there are continuous functionals on $L^{\infty}([0,1])$ that are not of this form.

Problem 5: Recall that a metric space is separable if it contains a countable dense subset.

- (a) Prove that $\ell^1(\mathbb{N})$ and $\ell^2(\mathbb{N})$ are separable Banach spaces but $\ell^\infty(\mathbb{N})$ is not.
- (b) Prove that there exists no linear bounded surjective map $T: \ell^2(\mathbb{N}) \to \ell^1(\mathbb{N})$.

Problem 6: Given a Hilbert space \mathcal{H} , let $\{a_n\}_{n\geq 1}\subset \mathcal{H}$ be a sequence with $||a_n||=1$ for all $n\geq 1$. Recall that the closed convex hull of $\{a_n\}_{n\geq 1}$ is the closure of the set of all convex combinations of elements in $\{a_n\}_n$.

- (a) Show that if $\{a_n\}_n$ spans \mathcal{H} linearly (i.e, any $x \in \mathcal{H}$ is of the form $\sum_{k=1}^m c_k a_{n_k}$, for some m and $c_k \in \mathbb{C}$), then \mathcal{H} is finite dimensional.
- (b) Show that if $\langle a_n, \xi \rangle \to 0$ for all $\xi \in \mathcal{H}$, then 0 is in the closed convex hull of $\{a_n\}_n$.

Problem 7: Characterize all entire functions f with |f(z)| > 0 for |z| large and

$$\limsup_{z \to \infty} \frac{\left| \log |f(z)| \right|}{|z|} < \infty$$

Problem 8: Construct a non-constant entire function f(z) such that the zeros of f are simple and coincide with the set of all (positive) natural numbers.

Problem 9: Prove Hurwitz' Theorem: Let $\Omega \subset \mathbb{C}$ be a connected open set and $f_n, f \colon \Omega \to \mathbb{C}$ holomorphic functions. Assume that $f_n(z)$ converges uniformly to f(z) on compact subsets of Ω . Prove that if $f_n(z) \neq 0$, $\forall z \in \Omega$, $\forall n$, then either f is identically equal to 0, or $f(z) \neq 0$, $\forall z \in \Omega$.

Problem 10: Let $\alpha \in [0,1] \setminus \mathbb{Q}$ and let $\{a_n\} \in \ell^1(\mathbb{N})$ with $a_n \neq 0$ for all $n \geq 1$. Set $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$. Show that

$$f(z) = \sum_{n \ge 1} \frac{a_n}{z - e^{i\alpha n}}, \quad z \in \mathbb{D},$$

converges and defines a function that is analytic in $\mathbb D$ which does not admit an analytic continuation to any domain larger than $\mathbb D$.

Problem 11: For each $p \in (-1,1)$, compute the improper Riemann integral

$$\int_0^\infty \frac{x^p}{x^2 + 1} \, \mathrm{d}x$$

Problem 12: Compute the number of zeros, including multiplicity, of $f(z) = z^6 + iz^4 + 1$ in the upper half plane in \mathbb{C} .