Analysis Qualifying Exam, September 25, 2015, 2:00 p.m. — 6:00 p.m.

Students should solve four real analysis problems (numbered 1–6) and four complex analysis problems (numbered 7–12).

Problem 1. Let g_n be a sequence of measurable functions on \mathbf{R}^d , such that $|g_n(x)| \leq 1$ for all x, and assume that $g_n \to 0$ almost everywhere. Let $f \in L^1(\mathbf{R}^d)$. Show that the sequence

 $f * g_n(x) = \int f(x - y)g_n(y) \, dy \to 0$

uniformly on each compact subset of \mathbf{R}^d , as $n \to \infty$.

Problem 2. Let $f \in L^p(\mathbf{R})$, $1 , and let <math>a \in \mathbf{R}$ be such that $a > 1 - \frac{1}{p}$. Show that the series

$$\sum_{n=1}^{\infty} \int_{n}^{n+n^{-a}} |f(x+y)| \ dy$$

converges for almost all $x \in \mathbf{R}$.

Problem 3. Let $f \in L^1_{loc}(\mathbf{R}^d)$ be such that for some 0 , we have

$$\left| \int f(x)g(x) \, dx \right| \le \left(\int |g(x)|^p \, dx \right)^{\frac{1}{p}},$$

for all $g \in C_0(\mathbf{R}^d)$. Show that f(x) = 0 a.e. Here $C_0(\mathbf{R}^d)$ is the space of continuous functions with compact support on \mathbf{R}^d .

Problem 4. Let \mathcal{H} be a separable infinite-dimensional Hilbert space and assume that (e_n) is an orthonormal system in \mathcal{H} . Let (f_n) be another orthonormal system which is complete, i.e. the closure of the span of the (f_n) is all of \mathcal{H} .

- Show that if $\sum_{n=1}^{\infty} ||f_n e_n||^2 < 1$ then the orthonormal system (e_n) is also complete.
- Assume that we only have $\sum_{n=1}^{\infty} ||f_n e_n||^2 < \infty$. Prove that it is still true that (e_n) is complete.

Problem 5. A function $f \in C([0,1])$ is called Hölder continuous of order $\delta > 0$ if there is a constant C > 0 such that $|f(x) - f(y)| \le C |x - y|^{\delta}$, $x, y \in [0,1]$. Show that the Hölder continuous functions form a set of the first category (a meager set) in C([0,1]).

Problem 6. Let $u \in L^2(\mathbf{R}^d)$ and let us say that $u \in H^{1/2}(\mathbf{R}^d)$ (a Sobolev space) if

$$\left(1+|\xi|^{1/2}\right)\widehat{u}(\xi)\in L^2(\mathbf{R}^d).$$

Here \hat{u} is the Fourier transform of u. Show that $u \in H^{1/2}(\mathbf{R}^d)$ if and only if

$$\iint \frac{|u(x+y) - u(x)|^2}{|y|^{d+1}} dx dy < \infty.$$

Problem 7. Assume that f(z) is analytic in $\{z : |z| < 1\}$ and continuous on $\{z : |z| \le 1\}$. If f(z) = f(1/z) when |z| = 1, prove that f(z) is constant.

Problem 8. Assume that f(z) is an entire function that is 2π -periodic in the sense that $f(z + 2\pi) = f(z)$, and

$$|f(x+iy)| \le Ce^{\alpha|y|},$$

for some C > 0, where $0 < \alpha < 1$. Prove that f is constant.

Problem 9. Let (f_j) be a sequence of entire functions such that, writing z = x + iy, we have

$$\iint_{\mathbf{C}} |f_j(z)|^2 e^{-|z|^2} dx dy \le C, \quad j = 1, 2, \dots,$$

for some constant C > 0. Show that there exists a subsequence (f_{j_k}) and an entire function f such that we have

$$\iint_{\mathbf{C}} |f_{j_k}(z) - f(z)|^2 e^{-2|z|^2} dx dy \to 0, \quad k \to \infty.$$

Problem 10. Use the Residue Theorem to prove that

$$\int_0^\infty e^{\cos x} \sin(\sin x) \frac{dx}{x} = \frac{\pi}{2} (e - 1).$$

Use a large semicircle as part of the contour.

Problem 11. Let $\Omega = \{(x,y) \in \mathbb{R}^2; x > 0 \, y > 0\}$ and let u be subharmonic in Ω , continuous in $\overline{\Omega}$, such that

$$u(x,y) \le |x+iy|,$$

for large $(x,y) \in \Omega$. Assume that

$$u(x,0) \le ax$$
, $u(0,y) \le by$, $x,y \ge 0$,

for some a, b > 0. Show that

$$u(x,y) \le ax + by, \quad (x,y) \in \Omega.$$

Problem 12. Find a function u(x, y) harmonic in the region between the circles |z| = 2 and |z - 1| = 1 which equals 1 on the outer circle and 0 on the inner circle (except at the point where the circles are tangent to each other).