ANALYSIS QUALIFYING EXAM, March 28, 2019

Answer at most 10 questions, including at least 4 from questions 1 - 6 and at least 4 from questions 7 - 12. On the front of your paper indicate which 10 problem you wish to have graded.

Problem 1. Let $f \in C^2(\mathbf{R})$ be a real valued function that is uniformly bounded on \mathbf{R} . Prove that there exists a point $c \in \mathbf{R}$ such that f''(c) = 0.

Problem 2. Let μ be a Borel probability measure on [0,1] that has no atoms (this means that $\mu(\{t\}) = 0$ for any $t \in [0,1]$). Let also $\mu_1, \mu_2, ...$ be Borel probability measures on [0,1]. Assume that μ_n converges to μ in the weak* topology. Denote $F(t) := \mu([0,t])$ and $F_n(t) := \mu_n([0,t])$ for each $n \geq 1$ and $t \in [0,1]$. Prove that F_n converges uniformly to F.

Problem 3. (a) Let f be a positive continuous function on \mathbf{R} such that $\lim_{|t|\to\infty} f(t) = 0$. Show that the set $\{hf \mid h \in L^1(\mathbf{R}, m), ||h||_1 \le K\}$ is a closed nowhere dense set in

 $L^1(\mathbf{R}, m)$, for any $K \geq 1$ (m denotes the Lebesgue measure on \mathbf{R}).

(b) Let $\{f_n\}_n$ be a sequence of positive continuous functions on \mathbf{R} such that for each n we have $\lim_{|t|\to\infty} f_n(t) = 0$. Show that there exists $g \in L^1(\mathbf{R}, m)$ such that $g/f_n \notin L^1(\mathbf{R}, m) \ \forall n$.

Problem 4. Let \mathcal{V} be the subspace of $L^{\infty}([0,1],\mu)$ (where μ is the Lebesgue measure on [0,1]) defined by

$$\mathcal{V} = \{ f \in L^{\infty}([0,1], \mu) \mid \lim_{n \to \infty} n \int_{[0,1/n]} f d\mu \text{ exists} \}$$

- (a) Prove that there exists $\varphi \in L^{\infty}([0,1],\mu)^*$ (i.e., a continuous functional on $L^{\infty}([0,1],\mu)$) such that $\varphi(f) = \lim_{n \to \infty} n \int_{[0,1/n]} f d\mu$ for every $f \in \mathcal{V}$.
- (b) Show that, given any $\varphi \in L^{\infty}([0,1],\mu)^*$ satisfying the condition in (a) above, there exists no $g \in L^1([0,1],\mu)$ such that $\varphi(f) = \int fg \ d\mu$ for all $f \in L^{\infty}([0,1],\mu)$.

Problem 5. (a) Prove that $L^p([0,1],\mu)$ are separable Banach spaces for $1 \leq p < \infty$ but $L^{\infty}([0,1],\mu)$ is not (where μ is the Lebesgue measure on [0,1]).

(b) Prove that there exists no linear bounded surjective map $T: L^p([0,1],\mu) \to L^1([0,1],\mu)$ if p > 1.

Problem 6. Let \mathcal{H} be a Hilbert space and $\{\xi_n\}_n$ a sequence of vectors in \mathcal{H} such that $\|\xi_n\| = 1$ for all n.

(a) Show that if $\{\xi_n\}_n$ converges weakly to a vector $\xi \in \mathcal{H}$ with $\|\xi\| = 1$, then $\lim_{n \to \infty} \|\xi_n - \xi\| = 0$.

(b) Show that if $\lim_{n,m\to\infty} \|\xi_n + \xi_m\| = 2$, then there exists a vector $\xi \in \mathcal{H}$ such that $\lim_{n\to\infty} \|\xi_n - \xi\| = 0$.

Problem 7. Let $f: \mathbf{C} \to \mathbf{C}$ be entire non-constant, and let us set

$$T(r) = \frac{1}{2\pi} \int_0^{2\pi} \log_+ \left| f(re^{i\varphi}) \right| \, d\varphi.$$

Here $\log_+ s = \max(\log s, 0)$. Show that $T(r) \to \infty$ as $r \to \infty$.

Problem 8. Show that

$$\sin z - z \cos z = \frac{z^3}{3} \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\lambda_n^2} \right), \quad z \in \mathbf{C},$$

where $(\lambda_n)_{n\geq 1}$ is a sequence in C, $\lambda_n\neq 0$ for all n, such that

$$\sum_{n=1}^{\infty} \frac{1}{|\lambda_n|^2} < \infty.$$

Problem 9. Let $\mathbf{D} = \{z \in \mathbf{C}; |z| < 1\}$ and let $\mathcal{A}(\mathbf{D})$ be the space of functions holomorphic in \mathbf{D} and continuous in $\overline{\mathbf{D}}$. Let

$$\mathcal{U} = \{ f \in \mathcal{A}(\mathbf{D}); |f(z)| = 1 \text{ for all } z \in \partial \mathbf{D} \}.$$

Show that $f \in \mathcal{U}$ if and only if f is a finite Blaschke product,

$$f(z) = \lambda \prod_{i=1}^{N} \frac{z - a_i}{1 - \overline{a_i} z},$$

for some $a_j \in \mathbf{D}$, $1 \le j \le N < \infty$ and $|\lambda| = 1$.

Problem 10. For a > 0, b > 0, evaluate the integral

$$\int_0^\infty \frac{\log x}{(x+a)^2 + b^2} \, dx.$$

Problem 11. Let $u \in C^{\infty}(\mathbf{R})$ be smooth 2π -periodic. Show that there exists a bounded holomorphic function f_+ in the upper half-plane $\operatorname{Im} z > 0$ and a bounded holomorphic function f_- in the lower half-plane $\operatorname{Im} z < 0$, such that

$$u(x) = \lim_{\varepsilon \to 0^+} (f_+(x + i\varepsilon) - f_-(x - i\varepsilon)), \quad x \in \mathbf{R}.$$

Problem 12. Let \mathcal{H} be the vector space of entire functions $f: \mathbf{C} \to \mathbf{C}$ such that

$$\int_{\mathbf{C}} |f(z)|^2 d\mu(z) < \infty.$$

Here $d\mu(z) = e^{-|z|^2} d\lambda(z)$, where $d\lambda(z)$ is the Lebesgue measure on C.

- 1. Show that \mathcal{H} is a closed subspace of $L^2(\mathbf{C}, d\mu)$.
- 2. Show that for all $f \in \mathcal{H}$, we have

$$f(z) = \frac{1}{\pi} \int_{\mathbf{C}} f(w) e^{z\overline{w}} d\mu(w), \quad z \in \mathbf{C}.$$

Hint for 2): Show that the normalized monomials

$$e_n(z) = \frac{1}{(\pi n!)^{1/2}} z^n, \quad n = 0, 1, \dots$$

form an orthonormal basis of \mathcal{H} .