Basic Qualifying Exam, 9am-1pm, September 12, 2016

Attempt at most FIVE problems numbered 1-6

AND
at most FIVE problems numbered $7-12$.

Problem 1. Suppose A, B are invertible $n \times n$ matrices with complex entries, such that $A B A^{-1}=B^{3}$. Show that all the eigenvalues of B are roots of unity.

Problem 2. Suppose

$$
A=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
$$

Find the smallest possible constant $C>0$ so that

$$
\left\|e^{A} x\right\| \leq C\|x\|
$$

for all $x \in \mathbb{R}^{2}$. Here $\|z\|$ denotes the usual (Pythagorean/Euclidean) length of the vector $z \in \mathbb{R}^{2}$.

Problem 3. Let

$$
B=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Find necessary and sufficient conditions on a 3×3 matrix A with real entries so that the equation

$$
A=R^{T} B R
$$

admits a solution R of full rank. Here R must be a 2×3 matrix with real entries. You must prove that your conditions are necessary and sufficient.

Problem 4. Let B be an 7×7 matrix and A_{n} a sequence of matrices of the same size. Suppose that

$$
A_{n} \rightarrow B \quad \text { as } \quad n \rightarrow \infty,
$$

in the sense that the individual matrix entries converge. Show that

$$
\operatorname{rank}(B) \leq \liminf _{n \rightarrow \infty} \operatorname{rank}\left(A_{n}\right)
$$

Problem 5. Let $\alpha_{1}, \cdots, \alpha_{n}$ be complex numbers, and $V=\left\{\sum_{i=1}^{n} a_{i} \alpha_{i} \mid a_{i} \in \mathbb{Q}\right\}$ be the vector subspace of \mathbb{C} spanned by them over the field of rational numbers, \mathbb{Q}. Let β be a complex number such that $\beta V \subset V$ where $\beta V=\{\beta v \mid v \in V\}$. Show that β is the root of a degree n polynomial with rational coefficients.

Problem 6. Let A be an invertible $n \times n$ matrix whose entries belong to \mathbb{Q}, the set of rational numbers. Suppose that $A v=3 v$ for a vector $v \in \mathbb{R}^{n}$.
(i) Give an example in which no non-zero scalar multiple λv for $\lambda \in \mathbb{R}$ is in \mathbb{Q}^{n}.
(ii) Show that there is always a non-zero $w \in \mathbb{Q}^{n}$ such that $A w=3 w$.

Problem 7. Determine the volume of the region in \mathbb{R}^{3} determined by the following inequalities:

$$
x^{2}+y^{2}+z^{2} \leq 4, \quad x^{2}-2 x+y^{2}+z^{2} \geq 0, \quad \text { and } \quad z \geq x
$$

Problem 8. (i) For each $n \in \mathbb{N}$ let $f_{n}: \mathbb{N} \rightarrow \mathbb{R}$ be a function with $\left|f_{n}(m)\right| \leq 1$ for all $m, n \in \mathbb{N}$. Prove that there is an infinite subsequence of distinct positive integers n_{i}, such that for each $m \in \mathbb{N}, f_{n_{i}}(m)$ converges.
(ii) For n_{i} as in (i), assume that in addition $\lim _{m \rightarrow \infty} \lim _{i \rightarrow \infty} f_{n_{i}}(m)$ exists and equals 0 . Prove or disprove: The same holds for the reverse double limit $\lim _{i \rightarrow \infty} \lim _{m \rightarrow \infty} f_{n_{i}}(m)$.

Problem 9. Let $f_{n}:[0,1] \rightarrow \mathbb{C}$ be a sequence of continuous functions. Suppose f_{n} converge pointwise. Show that the sequence converges uniformly if and only if the collection of functions $\left\{f_{n}\right\}$ is equicontinuous.

Problem 10. Find the unique point $(x, y) \in \mathbb{R}^{2}$ on the curve

$$
y^{4}+x^{4}=2
$$

that is closest to the line

$$
y=x-100 .
$$

Note: Formal calculations alone do not constitute a solution. You must justify rigorously that there is a point that is closest, that it is unique, and that it is the specific point that you claim that it is.

Problem 11. We define a metric space (X, dist) as follows:

$$
\begin{array}{r}
X:=\{f:[0,1] \rightarrow[0,1] \mid f \text { is continuous and } f(1)=0 .\} \\
\operatorname{dist}(f, g)=\inf \{r \in[0,1] \mid f(t)=g(t) \text { for all } r \leq t \leq 1 .\}
\end{array}
$$

Prove any TWO of the following statements about (X, dist):
(a) It is not compact.
(b) It is not connected.
(c) It is not separable.
(d) It is not complete.

Problem 12. We say that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if and only if

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

for all $x, y \in \mathbb{R}$ and all $t \in[0,1]$. Prove the following:
Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable. Then f is convex if and only if

$$
f(y) \geq f(x)+(y-x) f^{\prime}(x) \quad \text { for all } x, y \in \mathbb{R}
$$

