Instructions:

For a Ph.D. pass do 4 problems from each section to a total of 8 problems. For a M.A. pass do 2 from one and 3 from the other section to a total of 5 problems.

Geometry

1. Let M be a closed (compact, without boundary) manifold. Show that any smooth function

$$f:M\to\mathbb{R}$$

has a critical point.

- 2. (a) Show that every closed 1-form on S^n , n > 1, is exact.
 - (b) Use this to show that every closed 1-form on $\mathbb{R}P^n$, n > 1, is exact.
- 3. Let M^d be a d-dimensional manifold and $\omega_1, \ldots, \omega_p$ be pointwise linearly independent 1-forms. If $\theta_1, \ldots, \theta_p$ are 1-forms so that

$$\sum_{i=1}^p \omega_i \wedge \theta_i = 0,$$

then there exist smooth functions f_{ij} so that

$$\theta_i = \sum_{i=1}^p f_{ij}\omega_j, \quad i = 1, \dots, p.$$

(**Hint:** try p = 1)

4. Let M be the set of all straight lines in \mathbb{R}^2 (not just those which pass through the origin). Show that M is a smooth manifold and identify it with a well-known manifold.

(Hint: Lines not through the origin have a unique closest point to the origin and that point determines the line uniquely. What happens at the origin?)

5. Let $f: M^m \to N^n$ be a smooth bijection so that $Df: T_pM \to T_{f(p)}N$ is injective for all p. Show that f is a diffeomorphism.

Topology

6. (a) Show that if $f: S^n \to S^n$ has no fixed points then $\deg(f) = (-1)^{n+1}$.

(b) Show that if X has S^{2n} as universal covering space then $\pi_1(X) = \{1\}$ or \mathbb{Z}_2 .

(c) Show that if X has S^{2n+1} as universal covering space then X is orientable.

7. (a) Outline the construction of the universal covering of a path connected locally simply connected space X.

(b) Give an example of a path connected space which does not have a universal covering space.

8. Let X be a finite cell complex constructed inductively by gluing all p-cells onto cells of dimension < p. Assume no p-1 and p+1 cells are used to construct X. Show that

$$H_p(X,\mathbb{Z})\simeq \mathbb{Z}^{n_p}$$

when n_p is the number of p-cells used in the construction.

9. Let $(M, \partial M)$ be a compact oriented *n*-manifold with connected boundary ∂M . Show that there is no retract $r: M \to \partial M$, i.e., a map $r: M \to \partial M$ such that r(x) = x if $x \in \partial M$.

(**Hint:** Prove that $H_{n-1}(\partial M) \to H_{n-1}(M)$ is trivial.)

10. Let $X = T^2 - \{p, q\}, p \neq q$ be the twice punctured 2-dimensional torus.

(a) Compute the homology groups $H_*(X, \mathbb{Z})$.

(b) Compute the fundamental group of X.