<u>Instructions</u>: All problems are worth ten points.

1. Explain carefully how the classical "divergence theorem"

$$\iint\limits_{S} \vec{V} \cdot \vec{n} \ d(\text{area}) = \iiint\limits_{V} \ \text{div} \ \vec{V} \ d(\text{volume})$$

(V a bounded volume in \mathbb{R}^3 , S = boundary of V) follows from the Stokes' Theorem for differential forms.

- 2. Without using deRham's Theorem, prove:
 - (a) every closed 1-form on S^2 is exact.
 - (b) a two-form Ω is exact on S^2 if and only if

$$\int_{S^2} \Omega = 0.$$

- 3. Show that the set of all lines in \mathbb{R}^2 has a natural structure as a differentiable manifold. What (already familiar) manifold is it?
- 4. Show that S^3 is the union of two solid tori ($S^1 \times 2$ -disc) with a embedded torus ($S^1 \times S^1$) as their common boundary. (**Hint:** Express \mathbb{R}^3 with a solid torus removed as a union of circles and a single straight line and then add a point at infinity.)
- 5. Suppose M is a compact manifold (with empty boundary).
 - (a) Prove that, if $f: M \to \mathbb{R}$ is a C^{∞} function, then f has at least two critical points.
- (b) A C^{∞} function on $S^1 \times S^1$ cannot have only two critical points. Prove this (e.g.) by deforming a homotopically nontrivial S' along the gradient flow of $f: M \to \mathbb{R}$.
- 6. (a) Prove carefully that a group of homeomorphisms of S^{2n} , each of which has no fixed points (unless it is the identity map), contains at most two elements.

- (b) Give a counterexample for some S^{2n+1} , $n \ge 1$.
- 7. Find the homology groups with \mathbb{Z} coefficients, of $\mathbb{R}P^n$, $n=2,3,4\ldots$ by some systmatic rigorous method.
- 8. Find the homology and the fundamental group of $S^1 \times S^1$ with two points removed.
- 9. Prove that if a compact (empty boundary) manifold X has S^{2n+1} , $n \ge 1$, as a covering space, then X is orientable.
- 10. Suppose M is a compact orientable manifold (empty boundary). Prove that

$$H_n(M, \mathbb{Z}) \simeq \mathbb{Z}.$$

(You may assume M is triangulated.)