GEOMETRY/TOPOLOGY QUALIFYING EXAMINATION

January 18, 2003

Manifold Theory

- 1. Let M be a smooth compact manifold of dimension n. Show that there is no immersion of M into \mathbb{R}^n .
- 2. The *n*-dimensional torus T^n is defined to be $\mathbb{R}^n/\mathbb{Z}^n$, i. e. for any x and y in \mathbb{R}^n , $x \sim y$ iff $x y \in \mathbb{Z}^n$. Let α and β be two functions on \mathbb{R}^n such that (i) $\alpha(x) = \alpha(y)$ and $\beta(x) = \beta(y)$ iff $x y \in \mathbb{Z}^n$ and (ii) α/β is an irrational constant. Then

$$v = \alpha(x) \frac{\partial}{\partial x^1} + \beta(x) \frac{\partial}{\partial x^2}$$

is a vector field on \mathbb{R}^n descending to T^n , where

$$\{\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}, \dots, \frac{\partial}{\partial x^n}\}$$

are coordinate vector fields. Find all functions f on T^n such that vf = 0.

- 3. Let M and N be smooth compact connected manifolds and $f: M \to N$ be a smooth map such that, for any point $m \in M$, $rank(df_m) = \dim(N)$. Show that (i) for any $n \in N$, $f^{-1}(n)$ is a submanifold of M and (ii) for any n_1 and n_2 in N, the submanifolds $f^{-1}(n_1)$ and $f^{-1}(n_2)$ of M are diffeomorphic to each other.
 - 4. Let

$$\tilde{\theta} = \frac{1}{2} \{ (x^2 dx^1 - x^1 dx^2) + (x^4 dx^3 - x^3 dx^4) + \dots + (x^{2n} dx^{2n-1} - x^{2n-1} dx^{2n}) \}$$

be a 1-form on \mathbb{R}^{2n} and θ be its restriction to the unit sphere

$$S^{2n-1} = \{x = (x^1, \dots, x^{2n}) | (x^1)^2 + \dots + (x^{2n})^2 = 1\}.$$

The kernel K of θ is a distribution on S^{2n-1} :

$$K = \{v | v \in TS^{2n-1}, \theta(v) = 0\}.$$

Decide whether or not K is integrable.

5. Let $T^{2m} = \mathbb{R}^{2n}/\mathbb{Z}^{2n}$ be torus of dimension 2n. Consider the 2-form

$$\omega = dx^1 \wedge dx^{n+1} + dx^2 \wedge dx^{n+2} + \dots + dx^n \wedge dx^{2n}$$

defined on \mathbb{R}^{2n} descending to T^{2n} .

- (i) Show that ω is closed but not exact on T^{2n} .
- (ii) Let $i: T^n \to T^{2n}$ be the subtorus defined by the equation

$$x^{n+1} = x^{n+2} = \dots = x^{2n} = 0.$$

What is $i^*\omega$?

(iii) Let $\Sigma = S^2 \setminus \{\bigcup_{i=1}^m D_i\}$, where D_i , i = 1, ..., m are m open disks in S^2 with disjoint closures. Show that

$$\int_{\Sigma} f_1^* \omega = \int_{\Sigma} f_2^* \omega$$

if $f_1, f_2: (\Sigma, \partial \Sigma) \to (T^{2n}, T^n)$ are homotopic to each other, where $\partial \Sigma$ is the boundary of Σ .

ALGEBRAIC TOPOLOGY

- 1. Let X be a path connected space and let $x_0, x_1 \in X$. Prove carefully that $\pi_1(X, x_0)$ is isomorphic to $\pi_1(X, x_1)$.
- 2. (i) Define what is meant by a "chain homotopy" P between chain maps $f_\#, g_\#\colon C \to D$ and prove that chain homotopic chain maps induce the same homomorphism of homology. (ii) Let X and Y be spaces and let $F\colon X\times I\to Y$ be a homotopy between maps f and g. Define a chaim homotopy P between the induced chain maps $f_\#, g_\#\colon C(X)\to C(Y)$ of singular chains. (iii) Verify that P satisfies the definition of a chain homotopy ONLY for the restriction of P to $C_1(X)$.
- 3. Let X be a locally contractible space and H a subgroup of $\pi_1(X, x_0)$. Describe carefully how to construct a topological space X_H and a map $p: X_H \to X$ such that $p_*(\pi_1(X_H, \tilde{x}_0)) = H$ and show that it has the required property of p_* . (Note: Although X_H will be a covering space, you don't have to verify this unless you want to use some general properties of covering spaces.)
- 4. Prove that the real even-dimensional projective spaces $\mathbb{R}P^{2n}$ have the fixed point property, that is, every for every map $f: \mathbb{R}P^{2n} \to \mathbb{R}P^{2n}$ there is a solution to f(x) = x. (Hint: Consider maps on the covering space S^{2n} .)
- 5. Use the Mayer-Vietoris sequence to calculate the homology of $S^1 \times S^2$. You may assume the homology calculations for $S^1, S^1 \times S^1$ and S^2 .