GEOMETRY/TOPOLOGY QUALIFYING EXAMINATION

Winter, 2004

Manifold Theory

1. (a) Let $M = SL(2, \mathbb{R}) = \{A \in M_2\mathbb{R}; \det A = 1\}$. Show that M is a submanifold of $M_2(\mathbb{R})$ (the space of two-by-two matrices). Given $A \in M$, regard T_AM as a subspace of $M_2\mathbb{R}$. Consider three vector fields H, X, Y on M defined by

$$H(A) = A \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, X(A) = A \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, Y(A) = A \cdot \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix} \in T_A M.$$

Find the flows of H, X and Y.

- (b) Show that [H, X] = 2X.
- 2. State the general Stokes Theorem, and explain how the classical version

$$\int \int_S (\nabla \times \vec{v}) \cdot \vec{n} \, dA = \int_{\partial S} \vec{v} \cdot d\vec{r}$$

follows. Here S is a compact surface in \mathbb{R}^3 with normal vector \vec{n} and boundary ∂S , and \vec{r} is the position vector.

- 3. Describe diffeomorphisms between SO(3), $\mathbb{R}P^3$ and $UT(S^2)$, the unit tangent bundle of S^2 . You need not check that the maps are smooth. (SO(3)) is the special orthogonal group and $UT(S^2)$ is the set of tangent vectors of length one.)
- 4. Let X be the space of symmetric n-by-n real matrices and let X_k be the subspace of matrices of rank k in X. Show that X_k is a submanifold and find its dimension.
- 5. Suppose that $f: M \to N$ is C^{∞} , M and N are compact connected n-manifolds, and rank(df) = n. Show that f is a covering map.

Algebraic Topology

6. Consider the exact sequence of abelian groups and homomorphisms

$$0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0.$$

Prove that if there is a homomorphism $\gamma: B \to A$ such that $\gamma \alpha: A \to A$ is the identity, then B is isomorphic to $A \oplus C$.

7. Prove that the *n*-sphere S^n admits a continuous field of nonzero tangent vectors if and only if n is odd.

- 8. Let $p: \widetilde{X} \to X$ be the universal covering space of a space X and let $f: X \to X$ be a map.
- (a) Prove that there exist lifts of f to \widetilde{X} , that is, maps $\widetilde{f}:\widetilde{X}\to\widetilde{X}$ such that $p\widetilde{f}=fp$.
- (b) Suppose \tilde{f}_1, \tilde{f}_2 are lifts of f and there exist $\tilde{x}_1, \tilde{x}_2 \in \widetilde{X}$ such that $\tilde{f}(\tilde{x}_1) = \tilde{x}_1, \tilde{f}(\tilde{x}_2) = \tilde{x}_2$ and $p(\tilde{x}_1) = p(\tilde{x}_2)$. Prove that there exists a covering transformation $\sigma: \widetilde{X} \to \widetilde{X}$ such that $\tilde{f}_2 = \sigma \tilde{f}_1 \sigma^{-1}$.
- 9. Let $X_k = S^1 \times D^2 \{p_1, p_2, \dots, p_k\}$ be the solid torus (circle cross disc) with k > 1 points deleted from its interior. Calculate the homology of X_k .
- 10. Let $\Omega(X)$ denote the *loop space* of a metric space X with metric d. That means $\Omega(X)$ is the set of all maps $a:[0,1]\to X$ such that a(0)=a(1), with the topology given by the metric $d(a,b)=\max_{0\leq t\leq 1}d(a(t),b(t))$. Suppose $a,b\in\Omega(X)$ such that $a(0)=b(0)=x_0$. Prove that the classes $[a],[b]\in\pi_1(X,x_0)$ are conjugate in $\pi_1(X,x_0)$ if and only if a and b lie in the same path component of $\Omega(X)$.