Do all problems

Manifold Theory

- 1. (a) Define complex projective space P^n , $n \ge 1$, and prove that it is a compact differentiable manifold.
 - (b) Show that P^n is orientable for all n.
 - (c) Prove that P^1 is diffeomorphic to S^2 .
 - 2. Suppose N is an embedded submanifold of a (C^{∞}) manifold M. A vector field X on M is tangent to N if $X(p) \in T_pN \subset T_pM$ for all $p \in N$.
 - (a) Prove that if X and Y are vector fields on M that are each tangent to N, then [X,Y] is also tangent to N.
 - (b) Illustrate this principle for two vector fields (your choice) tangent to $S^2 \subset [X,Y] \neq 0$), computing [X,Y] and checking that [X,Y] is tangent to S^2
 - 3. DeRham's Theorem says that (closed p-forms)/(exact p-forms) $\cong H^p(M,)$ for a C^{∞} manifold M. Verify this in the special case $M = S^2$, where $H^1 = 0$, $H^2 = 1$ (given) by proving, by direct constructions:
 - (a) Every closed 1-form $\dot{\omega}$ (i.e., dw=0) is exact (i.e., $\omega=df$, some function f).
 - (b) A (closed, necessarily) 2-form Ω on S^2 is $d\Theta$, for some 1-form Θ , if and only if $\int_{S^2} \Omega = 0$.
 - (c) There is a 2-form Ω on S^2 such that $\int_{S^2} \Omega \neq 0$.
 - 4. A vector field V on 3 is said to be *gradient-like* at a point $(x,y,z) \in ^3$ if there is a neighborhood U of (x,y,z) and a nowhere-vanishing -valued function λ on U with the property that $\operatorname{curl}(\lambda V) \equiv \vec{0}$ on U. (So λV is the gradient of a function in a neighborhood of (x,y,z).)
 - Use the Frobenius Theorem to find a condition under which a nowhere vanishing vector field V on 3 is gradient-like at each $(x, y, z) \in ^3$. Demonstrate that your condition works
 - 5. Prove that if M is a compact C^{∞} manifold, then for some positive integer k there is a C^{∞} mapping $F: M \to {}^k$ such that $dF|_q$ is injective for all $q \in M$.

Algebraic Topology

- 6. (a) Write down the Mayer-Vietoris sequence associated to a pair of open sets U and V with $U \cup V =$ a topological space X.
 - (b) Describe explicitly how the dimension-lowering map(s) in this long exact sequence arise and prove that this map is well-defined.

- 7. Let X be a space that has a simply-connected covering space $p: \tilde{X} \to X$.
- (a) Prove that X is semi-locally simply connected. (i.e. each $x \in X$ has a neighborhood such that every loop at x that is in the neighborhood is contractible in X.)
- (b) Prove that $p: \tilde{X} \to X$ is "universal" in the sense that, given any covering space $p': X' \to X$, there is a covering space $q: \tilde{X} \to X'$ with p = p'q.
- 8. (a) Prove that if X is a topological manifold of dimension n then, for each $x_0 \in X$, the relative homology $H_n(X, X \{x_0\})$ is isomorphic to .
 - (b) Explain how if X is a C^{∞} n-manifold that is orientable, then an orientation of X picks out a particular generator of $H_n(X, X \{x_0\})$ for each $x_0 \in X$.
 - 9. Let X be the space obtained by deleting from the closed ball of radius 2 in 3 the unit circle in the (x, y) plane, i.e.,

$$X = \{(x, y, z) \in {}^{3}: x^{2} + y^{2} + z^{2} \le 2\} \setminus \{(x, y, 0) \in {}^{3}: x^{2} + y^{2} = 1\}.$$

Compute the homology groups of X.

10. Viewing the unit circle S^1 in the plane as the complex numbers of norm one, let $\mu: S^1 \times S^1 \to S^1$ be complex multiplication. Given maps $f, g: S^1 \to S^1$, **define** their "product" $h: S^1 \to S^1$ by $h(z) = \mu(f(z), g(z))$. Prove that the degrees are related by $\deg(h) = \deg(f) + \deg(g)$. (Hint: First show that, for maps of the circle, degree can be defined in terms of the fundamental group.)