Manifold Problems

- 1. Let M^2 be a smooth 2-manifold and $f: M^2 \to \mathbf{R}$ be a smooth surjective map without critical points. Assume that for any finite closed interval $[a, b] \hookrightarrow \mathbf{R}$, $f^{-1}([a, b])$ is compact. What is M^2 ?
- 2. Show that $T^2 \times S^2$ is parallelizable, i.e., there are 4 vector fields that are everywhere linearly independent.
- 3. Let $V = P \frac{\partial}{\partial x} + Q \frac{\partial}{\partial y} + R \frac{\partial}{\partial z}$ be a nowhere zero C^{∞} vector field on \mathbf{R}^3 . Show that the following three statements are equivalent.
 - a) The orthogonal-to-V plane field is integrable on some neighbourhood of $\mathbf{0} \in \mathbf{R}^3$.
 - b) There exists a nowhere-zero C^{∞} function $f: \mathbf{R}^3 \to \mathbf{R}$ such that $\operatorname{curl}(fV) \equiv \mathbf{0}$ on some neighbourhood of $\mathbf{0} \in \mathbf{R}^3$.
 - c) $V \cdot \text{curl}(V) \equiv 0$ on some neighbourhood of $\mathbf{0} \in \mathbf{R}^3$.
- 4. Let $f: \mathbf{R}^n \to \mathbf{R}$ be a smooth function and $x \in \mathbf{R}^n$ be a critical point of f. The Hessian $H(t)_x$ at x be a bilinear form: $T_x \mathbf{R}^n \times T_x \mathbf{R}^n \to \mathbf{R}$ defined as follows. For any two vectors V_1 and V_2 in $T_x \mathbf{R}^n$, extend V_2 to a vector field \tilde{V}_2 near x, and define $H(f)_x(V_1, V_2) =: D_{v_1}(D_{\tilde{v}_2}f)$. Show that:
 - (1) $H(f)_x(V_1, V_2) = H(f)_x(V_2, V_1).$
 - (2) $H(f)_x(V_1, V_2)$ is independent of the choice of the extension \tilde{V}_2 .
- 5. (1) State Stokes' Theorem in its most general form.
 - (2) Use the Stokes' Theorem to prove that for any vector field X defined on \mathbb{R}^n , $\int_{\Omega} (\operatorname{div} X) dx^1 \cdots dx^n = \pm \int_{\partial\Omega} (X \cdot N) ds$ where Ω is a bounded domain in \mathbb{R}^n with smooth boundary $\partial\Omega$ and a unit normal field N on $\partial\Omega$. Here ds is the "area" form.

Topology Problems

1. Sketch the proof of:

THEOREM. If D is a subspace of S^n homeomorphic to I^k for some $k \geq 0$ then the reduced homology groups $\tilde{H}_i(S^n - D, \mathbf{Z})$ are trivial for all i.

(Hint: Induction on k.) (This is a special case of Alexander duality. No credit for saying "Applying Alexander duality ...".)

- 2. Show that $\mathbf{R}P^3$ is not homotopy equivalent to $\mathbf{R}P^2 \vee S^3$. (You could use cup products, degree, or covering spaces.)
- 3. Suppose $F: X \times I \to Y$ is a homotopy between $f: X \to Y$ and $g: X \to Y$. (6 pts) a) Indicate how to construct prism operators $P: C_n(X) \to C_{n+1}(Y)$ satisfying $g_* f_* = \partial P + P \partial$ where $f_*: C_n(X) \to C_n(Y)$, $g_*: C_n(X) \to C_n(Y)$ are the chain maps.
 - (4 pts) b) Show that the induced homomorphisms $H_n(f)$, $H_n(g)$ are equal.
- 4. Give examples of a) two nonhomeomorphic connected regular 3-sheeted covering spaces of the bouquet of two circles and b) an irregular connected 3-sheeted cover of the bouquet of two circles.
- 5. (5 pts) a) Find the Euler characteristic of X_4^2 , the 2-skeleton of the 4-simplex. (5 pts) b) Give a reason why $H_2(X_4^2)$ is free abelian and find its rank.