All ten problems have equal value.

Part I: Differentiable Manifolds

- 1. (i) Suppose that M is a closed (that is, compact and without boundary) smooth m-manifold. Show that there is a smooth embedding $f: M \hookrightarrow \mathbb{R}^n$ for sufficiently large n.
- (ii) Adapt/extend your argument to show that if $g: M \to \mathbb{R}^n$ is a given *continuous* map, then the smooth embedding (of part (i)) $f: M \hookrightarrow \mathbb{R}^n$ can be chosen to be arbitrarily (pointwise) close to g (again for sufficiently-large-but-fixed n).
- 2. Let $\omega = dx_1 \wedge dy_1 + \cdots + dx_n \wedge dy_n$ be a 2-form defined on \mathbb{R}^{2n} , where $(x_1, y_1, \dots, x_n, y_n)$ are the coordinates of \mathbb{R}^{2n} .
- (i) Show that as a bilinear form defined on \mathbb{R}^{2n} , ω is non-degenerate.
- (ii) Let $f: \mathbb{R}^{2n} \to \mathbb{R}^1$ be smooth. Show that there is a unique vector field X_f on \mathbb{R}^{2n} such that for any vector field Y on \mathbb{R}^{2n} , $df(Y) = \omega(X_f, Y)$.
- (iii) Use the formula $\mathcal{L}_X = i_X \circ d + d \circ i_X$ to compute the Lie derivative $\mathcal{L}_{X_f} \omega$. Here $i_X : \Omega^k(\mathbb{R}^{2n}) \to \Omega^{k-1}(\mathbb{R}^{2n})$ denotes the interior product (or contraction) defined by

$$i_X(\eta)(Y_1,\ldots,Y_{k-1}) := \eta(X,Y_1,\ldots,Y_{k-1}).$$

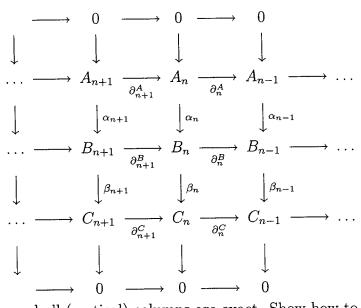
- 3. Let $\omega = (x_1^2 + \dots + x_n^2)^{-\frac{n}{2}} \sum_{i=1}^n (-1)^{i-1} x_i dx_1 \wedge dx_2 \wedge \dots \widehat{dx_i} \dots \wedge dx_n$ be an (n-1)-form defined on $\mathbb{R}^n \{0\}$.
- (i) Suppose f is a smooth map from a closed oriented manifold M of dimension n-1 to $\mathbb{R}^n \{\mathbf{0}\}$. Show that $\int_M f^*\omega$ only depends on the homotopy class of f.
- (ii) Find the possible values of the integrals in (i) in the case that n=3 and $M=S^2$.
- 4. Suppose M and N are two smooth manifolds of positive dimensions m and n respectively, and f is a smooth map from M to N.
- (i) If m < n, is it possible that f is surjective? Justify appropriately your answer.
- (ii) If $m \ge n$, must some point-inverse $f^{-1}(y)$ be a smooth (m-n)-dimensional submanifold of M? Justify appropriately your answer.
- (iii) Show that some point-inverse $f^{-1}(y)$ can be homeomorphic to a Cantor set. Hint: The model case is where $f: \mathbb{R}^1 \to [0, \infty) \subset \mathbb{R}^1$, with $f^{-1}(0) = \text{Cantor set}$. The desired f can be constructed as a suitable limit of sums of C^{∞} bump functions. Supply details, extending your argument to the general case (arbitrary M and N) of the question.

- 5. (i) Let $f: \mathbb{R}^n \to \mathbb{R}^1$ be a smooth function. Show that there are smooth functions g_1, \dots, g_n from \mathbb{R}^n to \mathbb{R}^1 such that $f(\boldsymbol{x}) = f(\boldsymbol{0}) + \sum_{j=1}^n g_j(\boldsymbol{x}) x_j$ and $g_j(\boldsymbol{0}) = \frac{\partial f}{\partial x_j}(\boldsymbol{0})$, where $\boldsymbol{x} = (x_1, \dots, x_j, \dots, x_n)$. (Hint: Recall that such g_j 's can be defined using integrals.)
- (ii) Let F be a diffeomorphism of \mathbb{R}^n to itself. Use (i) to find a smooth isotopy (= a smooth homotopy which is a diffeomorphism at each fixed time of the homotopy) between F and $DF(\mathbf{0})$. (Hint: To find the isotopy F_t , $0 \le t \le 1$, you may assume that $F(\mathbf{0}) = \mathbf{0}$ (justify this) and then define $F_t(\mathbf{x}) = F(t\mathbf{x})/t$ for $0 < t \le 1$.)

Part II: Algebraic Topology

- 6. (i) Define what it means for two spaces X and Y to be homotopically equivalent (equivalently, to have the same homotopy type).
- (ii) Define what it means for a space W to be *contractible*. (If you wish, you may reference your definition in part (i).)
- (iii) Suppose that X is a manifold and W is an arbitrary contractible space. Show that X and the wedge $Y := X \underset{x_0 \sim w_0}{\vee} W$ are homotopically equivalent. (Here $x_0 \in X$ and $w_0 \in W$ are (arbitrary) points, and $X \underset{x_0 \sim w_0}{\vee} W$ is the one-point union of X and W at these points.)
- 7. (i) Define what it means for a map $p: X \to Y$ to have the (unique) homotopy lifting property (= HLP here), equivalently known as the (unique) covering homotopy property (= CHP). Recall (partly to establish some notation) that the definition begins: $p: X \to Y$ has the HLP if, given any space W and homotopy $F: W \times [0,1] \to Y$ such that
- (ii) Show that a covering map $p: X \to Y$ has the HLP for the special case where W is a point.
- 8. (i) Suppose that $X = U \cup V$ is the union of two open subsets U and V whose intersection is path-connected, and let $x_0 \in U \cap V$. State (carefully) the (Seifert -)van Kampen Theorem for these data, relating $\pi_1(X, x_0)$ to $\pi_1(U, x_0)$, $\pi_1(V, x_0)$ and $\pi_1(U \cap V, x_0)$.
- (ii) Prove the special case of this theorem which asserts that the natural homomorphism $\pi_1(U, x_0) * \pi_1(V, x_0) \to \pi_1(X, x_0)$ is an epimorphism.

- 9. Suppose that $A = \{\partial_n^A : A_n \to A_{n-1} \mid n \ge 0\}$ is a chain complex (with it understood that $A_{-1} = 0$).
- (i) Define the *n*th homology group $H_n(A)$.
- (ii) Suppose that A, B and C are chain complexes, with (connecting) homomorphisms $\alpha = \{\alpha_n \colon A_n \to B_n\}$ and $\beta = \{\beta_n \colon B_n \to C_n\}$ such that



all squares commute and all (vertical) columns are exact. Show how to define the boundary homomorphism $\partial_n \colon H_n(\mathcal{C}) \to H_{n-1}(\mathcal{A})$, and justify that it is well-defined.

(iii) Define and prove exactness at $H_{n-1}(A)$ (for the long exact sequence $\cdots \to H_n(\mathcal{C}) \to H_{n-1}(A) \to H_{n-1}(B) \to \cdots$).

10. Let S^p and S^q be (standard) spheres of (arbitrary) dimensions $p \ge 0$ and $q \ge 0$. Compute the homology groups $H_n(S^p \times S^q)$ for all $n \ge 0$. You may use any reasonable method (e.g. Mayer-Vietoris, or cellular homology), as long as you present your argument with suitable completeness and clarity.