QUALIFYING EXAM Geometry/Topology September 2011

Attempt all problems. Each problem is worth 10 points. Justify your answers carefully.

- 1. Let M be an (abstract) compact smooth manifold. Prove that there exists some $n \in \mathbb{Z}^+$ such that M can be smoothly embedded in the Euclidean space \mathbb{R}^n .
 - 2. Prove that the real projective space \mathbb{RP}^n is a smooth manifold of dimension n.
- 3. Let M be a compact, simply connected smooth manifold of dimension n. Prove that there is no smooth immersion $f: M \to T^n$, where $T^n = S^1 \times \cdots \times S^1$ is the n-torus.
- 4. Give a topological proof of the Fundamental Theorem of Algebra: any non-constant single-variable polynomial with complex coefficients has at least one complex root.
- 5. Let $f: M \to N$ be a smooth map between two manifolds M and N. Let α be a p-form on N. Show that $d(f^*\alpha) = f^*(d\alpha)$.
 - 6. (a) What are the de Rham cohomology groups of a smooth manifold?
 - (b) State de Rham's theorem.
 - 7. Consider the form

$$\omega = (x^2 + x + y)dy \wedge dz$$

- on \mathbb{R}^3 . Let $S^2 = \{x^2 + y^2 + z^2 = 1\} \subset \mathbb{R}^3$ be the unit sphere, and $i: S^2 \to \mathbb{R}^3$ the inclusion.
 - (a) Calculate $\int_{S^2} \omega$.
- (b) Construct a closed form α on \mathbb{R}^3 such that $i^*\alpha = i^*\omega$, or show that such a form α does not exist.
- 8. (a) Let M be a Möbius band. Using homology, show that there is no retraction from M to ∂M .
- (b) Let K be a Klein bottle. Show that there exist homotopically nontrivial simple closed curves γ_1 and γ_2 on K such that K retracts to γ_1 , but does not retract to γ_2 .
- 9. Let X be the topological space obtained from a pentagon by identifying its edges as in the picture:

Calculate the homology and cohomology groups of X with integer coefficients.

10. Let X, Y be topological spaces and $f, g: X \to Y$ two continuous maps. Consider the space Z obtained from the disjoint union $Y \coprod (X \times [0,1])$ by identifying $(x,0) \sim f(x)$ and $(x,1) \sim g(x)$ for all $x \in X$. Show that there is a long exact sequence of the form:

$$\dots \longrightarrow H_n(X) \longrightarrow H_n(Y) \longrightarrow H_n(Z) \longrightarrow H_{n-1}(X) \longrightarrow \dots$$