QUALIFYING EXAM

Geometry/Topology

September 2013

Answer all 10 questions. Each problem is worth 10 points. Justify your answers carefully.

1. Let $f: M \to N$ be a nonsingular smooth map between connected manifolds of the same dimension. Answer the following questions with a proof or counter-example.

(a) Is f necessarily injective or surjective?

- (b) Is f necessarily a covering map when N is compact?
- (c) Is f necessarily an open map?
- (d) Is f necessarily a closed map?

2. Let *M* be a connected compact manifold with non-empty boundary ∂M . Show that *M* does not retract onto ∂M .

3. Let $M, N \subset \mathbb{R}^{p+1}$ be two compact, smooth, oriented submanifolds of dimensions m and n, respectively, such that m + n = p. Suppose that $M \cap N = \emptyset$. Consider the linking map

$$\lambda: M \times N \to S^p, \ \lambda(x,y) = \frac{x-y}{\|x-y\|}.$$

The degree of λ is called the linking number l(M, N).

(a) Show that $l(M, N) = (-1)^{(m+1)(n+1)} l(N, M)$.

(b) Show that if M is the boundary of an oriented submanifold $W \subset \mathbb{R}^{p+1}$ disjoint from N, then l(M, N) = 0.

4. Let ω be a 1-form on a connected manifold M. Show that ω is exact, i.e., $\omega = df$ for some function f, if and only if for all piecewise smooth closed curves $c: S^1 \to M$ it follows that $\int_c \omega = 0$.

5. Let ω be a smooth, nowhere vanishing 1-form on a three-dimensional smooth manifold M^3 .

(a) Show that ker ω is an integrable distribution on M if and only if $\omega \wedge d\omega = 0$.

(b) Give an example of a codimension one distribution on \mathbb{R}^3 that is not integrable.

6. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a smooth function.

(a) Define the gradient ∇f as a vector field dual to the differential df.

(b) Define the Hessian $\operatorname{Hess} f(X, Y)$ as a symmetric (0, 2)- tensor.

(c) If the usual Euclidean inner product between tangent vectors in $T_p \mathbb{R}^n$ is denoted $g(X, Y) = X \cdot Y$ show that

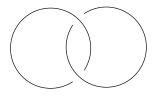
$$\operatorname{Hess} f(X,Y) = \frac{1}{2} \left(\mathscr{L}_{\nabla f} g \right) (X,Y)$$

Here $\mathscr{L}_Z g$ is the Lie derivative of g in the direction of Z.

7. Let $M = T^2 - D^2$ be the complement of a disk inside the two-torus. Determine all connected surfaces that can be described as 3-fold covers of M.

8. Let n > 0 be an integer and let A be an abelian group with a finite presentation by generators and relations. Show that there exists a topological space X with $H_n(X) \cong A$.

9. Let $H \subset S^3$ be the Hopf link, shown in the figure



Compute the fundamental group and the homology groups of the complement $S^3 - H$.

10. Let $\mathbb{H} = \mathbb{R} \oplus \mathbb{R}i \oplus \mathbb{R}j \oplus \mathbb{R}k$ be the group of quaternions, with relations $i^2 = j^2 = -1$, ij = -ji = k. The multiplicative group $\mathbb{H}^* = \mathbb{H} - \{0\}$ acts on $\mathbb{H}^n - \{0\}$ by left multiplication. The quotient $\mathbb{HP}^{n-1} = (\mathbb{H}^n - \{0\})/\mathbb{H}^*$ is called the quaternionic projective space. Calculate its homology groups.