QUALIFYING EXAM Geometry/Topology March 2014

Attempt all ten problems. Each problem is worth 10 points. Justify your answers carefully.

- 1. Let $\Gamma \subset \mathbb{R}^2$ be the graph of the function y = |x|.
- (a) Construct a smooth function $f: \mathbb{R} \to \mathbb{R}^2$ whose image is Γ .
- (b) Can f be an immersion?
- **2.** Let W be a smooth manifold with boundary, and $f: \partial W \to \mathbb{R}^n$ a smooth map, for some $n \geq 1$. Show that there exists a smooth map $F: W \to \mathbb{R}^n$ such that $F|_{\partial W} = f$.
- **3.** Let $S^n \subset \mathbb{R}^{n+1}$ be the unit sphere. Determine the values of $n \geq 0$ for which the antipodal map $S^n \to S^n$, $x \mapsto -x$ is isotopic to the identity.
- 4. Let $\omega_1, \dots, \omega_k$ be 1-forms on a smooth *n*-dimensional manifold M. Show that $\{\omega_i\}$ are linearly independent if and only if

$$\omega_1 \wedge \omega_2 \wedge \cdots \wedge \omega_k \neq 0.$$

- 5. Let $M = \mathbb{R}^2/\mathbb{Z}^2$ be the two dimensional torus, L the line 3x = 7y in \mathbb{R}^2 , and $S = \pi(L) \subset M$ where $\pi : \mathbb{R}^2 \to M$ is the projection map. Find a differential form on M which represents the Poincaré dual of S.
- **6.** Let $S^n \subset \mathbb{R}^{n+1}$ be the unit sphere, equipped with the round metric g_S (the restriction of the Euclidean metric on \mathbb{R}^{n+1}). Consider also the hyperplane $H = \mathbb{R}^n \times \{0\} \subset \mathbb{R}^{n+1}$, equipped with the Euclidean metric g_H . Any line passing through the North Pole $p = (0, \dots, 0, 1)$ and another point $A \in S^n$ will intersect this hyperplane in a point A'. The map

$$\Psi:S^n\setminus\{p\}\to H,\ \Psi(A)=A'$$

is called the stereographic projection. Show that Ψ is conformal, i.e. for any $x \in S^n \setminus \{p\}$, the bilinear form $(g_S)_x$ is a multiple of the bilinear form $\Psi^*((g_H)_{\Psi(x)})$.

- 7. Let X be the wedge sum $S^1 \vee S^1$. Give an example of an irregular covering space $\tilde{X} \to X$.
- 8. For $n \geq 2$, let X_n be the space obtained from a regular (2n)-gon by identifying the opposite sides with parallel orientations. For example, X_3 is

The above description produces a cell decomposition of X_n .

- (a) Write down the associated cellular chain complex.
- (b) Show that X_n is a surface, and find its genus.

- **9.** (a) Consider the space Y obtained from $S^2 \times [0,1]$ by identifying (x,0) with (-x,0) and also identifying (x,1) with (-x,1), for all $x \in S^2$. Show that Y is homeomorphic to the connected sum $\mathbb{RP}^3 \# \mathbb{RP}^3$.
 - (b) Show that $S^{2} \times S^{1}$ is a double cover of the connected sum $\mathbb{RP}^{3} \# \mathbb{RP}^{3}$.
- 10. Let X be a topological space. Define the suspension S(X) to be the space obtained from $X \times [0, 1]$ by contracting $X \times \{0\}$ to a point, and contracting $X \times \{1\}$ to another point. Describe the relation between the homology groups of X and S(X).