Geometry/Topology

September 2015

Answer all 10 questions. Each problem is worth 10 points. Justify your answers carefully.

- 1. Let $M_n(\mathbb{R})$ be the space of $n \times n$ matrices with real coefficients.
 - (a) Show that $SL(n,\mathbb{R}) = \{A \in M_n(\mathbb{R}) \mid \det(A) = 1\}$ is a smooth submanifold of $M_n(\mathbb{R})$.
 - (b) Show that $SL(n, \mathbb{R})$ has trivial Euler characteristic.
- **2.** Let $f, g: M \to N$ be smooth maps between smooth manifolds that are smoothly homotopic. Prove that if ω is a closed form on N, then $f^*\omega$ and $g^*\omega$ are cohomologous.
- 3. For two smooth vector fields X, Y on a smooth manifold M, prove the formula

$$[\mathcal{L}_X, i_Y]\omega = i_{[X,Y]}\omega,$$

where \mathcal{L}_X is the Lie derivative in the direction of X, i_X is the interior product of X, and ω is a k-form for $k \geq 1$.

- **4.** Let $M = \mathbb{R}^3/\mathbb{Z}^3$ be a three-dimensional torus and $C = \pi(L)$, where $L \subset \mathbb{R}^3$ is the oriented line segment from (0,1,1) to (1,3,5) and $\pi: \mathbb{R}^3 \to M$ is the quotient map. Find a differential form on M which represents the Poincaré dual of C.
- 5. Recall that the Hopf fibration $\pi: S^3 \to S^2$ is defined as follows: if we identify

$$S^3 = \{(z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 = 1\}$$

and $S^2 = \mathbb{CP}^1$ with homogenous coordinates $[z_1, z_2]$, then $\pi(z_1, z_2) = [z_1, z_2]$. Show that π does not admit a section, i.e., a smooth map $s: S^2 \to S^3$ such that $\pi \circ s = id_{S^2}$.

- **6.** Let $M^m \subset \mathbb{R}^n$ be a smooth submanifold of dimension m < n 2. Show that its complement $\mathbb{R}^n M$ is connected and simply-connected.
- 7. Show that there exists no smooth degree one map from $S^2 \times S^2$ to \mathbb{CP}^2 .
- 8. Show that \mathbb{CP}^{2n} , $n \in \mathbb{Z}^+$, is not a covering space of any manifold except itself.
- 9. Given a continuous map $f:X\to Y$ between topological spaces, define

$$C_f = \left((X \times [0,1]) \coprod Y \right) / \sim,$$

where $(x, 1) \sim f(x)$ for all $x \in X$ and $(x, 0) \sim (x', 0)$ for all $x, x' \in X$. Here \coprod is the disjoint union. Show that there is a long exact sequence

$$\cdots \to H_{i+1}(X) \xrightarrow{f_*} H_{i+1}(Y) \to \widetilde{H}_{i+1}(C_f) \to H_i(X) \xrightarrow{f_*} H_i(Y) \to \cdots$$

where f_* is the map on homology induced from f and \widetilde{H}_i denotes the ith reduced homology group.

Continued on the next page.

- 10. Let \mathbb{RP}^n be the real projective space given by S^n/\sim , where $S^n=\{\|x\|=1\}\subset\mathbb{R}^{n+1}$ and $x\sim -x$ for all $x\in S^n$.
 - (a) Give a cell (CW) decomposition of \mathbb{RP}^n for $n \geq 1$.
 - (b) Use the cell decomposition to compute the homology groups $H_k(\mathbb{RP}^n), k \geq 0$.
 - (c) For which values of $n \ge 1$ is \mathbb{RP}^n orientable? Explain.