All nine problems have equal value. Good luck!

1. Let $(\varphi_e)_{e \in \mathbb{N}}$ be some canonical listing of the partial recursive functions. Call a total function f "large" if $f(e) > \varphi_e(0)$ for all e for which $\varphi_e(0)$ is defined. Show that if f is large then it has degree at least $\mathbf{0}'$.

2. Let Σ be a set of first-order sentences and let \mathfrak{M} be a structure. Show that if every finitely generated substructure of \mathfrak{M} has an extension to a model of Σ then so does \mathfrak{M} .

3. Let $\mathfrak A$ be a model for a finite language $\mathcal L$ containing the predicate symbols P, Q, and R. Let

$$\begin{array}{rcl} M &=& \{a \mid \mathfrak{A} \models P(a)\} \\ K &=& \{(a,b,c) \mid \mathfrak{A} \models Q(a,b,c)\} \\ L &=& \{(a,b,c) \mid \mathfrak{A} \models R(a,b,c)\}. \end{array}$$

Suppose that the set M together with the relations K and L is isomorphic to \mathbb{N} together with addition and multiplication (as ternary relations). Prove that the theory of \mathfrak{A} is undecidable.

4. Recall that a formula $\varphi(x_1,\ldots,x_n)$ is *complete* (in a complete theory T) if for every formula $\psi(x_1,\ldots,x_n)$ either

$$T \models \varphi \rightarrow \psi$$
, or $T \models \varphi \rightarrow \neg \psi$.

A model \mathfrak{M} is said to be atomic if every $\vec{a} \in \mathfrak{M}^{<\omega}$ satisfies a complete formula in the theory of \mathfrak{M} .

Give an example of a countable complete theory that has an atomic model of size \aleph_1 but is not \aleph_0 -categorical. Justify your answer (prove that your example works).

5. Recall that a model \mathfrak{M} is ω -saturated if any consistent type is realized. More precisely: for $\vec{a} \in \mathfrak{M}^{<\omega}$, $\Sigma(\vec{a}, x)$ is a consistent type in the variable x if for any finite

$$\{\varphi_1(\vec{a},x),\ldots,\varphi_n(\vec{a},x)\}\subseteq\Sigma(\vec{a},x)$$

there is some $b \in \mathfrak{M}$ with $\mathfrak{M} \models \varphi_i(\vec{a}, b)$ for all $i \in \{1, 2, ..., n\}$. \mathfrak{M} is ω -saturated if for any $\vec{a} \in \mathfrak{M}^{<\omega}$ and any consistent type $\Sigma(\vec{a}, x)$ there is some actual $c \in \mathfrak{M}$ with $\mathfrak{M} \models \varphi(\vec{a}, c)$ for all $\varphi(\vec{a}, x) \in \Sigma(\vec{a}, x)$.

Show that if a countable complete theory T has only \aleph_1 -many non-isomorphic countable models then it has an ω -saturated model of size less than \aleph_2 .

6. Let ZFC⁻ be all the axioms of ZFC except the power set axiom. Recall that for each ordinal α there is an ordinal $\beta > \alpha$ with

$$L_{\beta} \models \mathrm{ZFC}^{-}$$
.

For each α let $\pi(\alpha)$ be the least ordinal above α with

$$L_{\pi(\alpha)} \models \mathrm{ZFC}^-.$$

Show that there is some $\alpha < \omega_1$ with

$$L_{\pi(\alpha)} \models "\alpha > \omega_2".$$

7. (a) Show that if κ is a regular uncountable cardinal then for all $A \in L_{\kappa}$ there is $\alpha < \kappa$ with

$$A \in L_{\alpha}$$

and

$$L_{\alpha} \prec L_{\kappa}$$

 $(L_{\alpha} \prec L_{\kappa} \text{ stands for "} L_{\alpha} \text{ is an elementary substructure of } L_{\kappa}").$

(b) A cardinal κ is weakly inaccessible if it is regular, uncountable, and for each $\gamma < \kappa$ we have $\gamma^+ < \kappa$. Show that if κ is weakly inaccessible then

$$L_{\kappa} \models \mathrm{ZFC}.$$

- (c) Assuming ZFC + Con(ZFC) to be consistent, show that ZFC + Con(ZFC) does not prove Con(ZFC + there exists a weakly inaccessible cardinal). (For a recursively axiomatized theory T, recall that Con(T) is the canonical formula expressing the consistency of T.)
- 8. Assume ZFC is consistent. Show that there is a model $\mathfrak N$ of ZFC containing no (genuine) well-orderings of an infinite set. That is to say, whenever $a, w \in \mathfrak N$ with

$$A = \{x \in \mathfrak{N} \mid \mathfrak{N} \models "x \in a"\}$$

infinite, the relation

$$R = \{\langle x, y \rangle \mid \mathfrak{N} \models "\langle x, y \rangle \in w"\}$$

is not a well-ordering of A.

- **9.** Let $(W_e)_{e\in\mathbb{N}}$ be a canonical enumeration of the r.e. subsets of \mathbb{N} . Let A be the set of e for which W_e contains an arithmetical progression of the kind $\{2^h + n2^{h+1} \mid n \in \mathbb{N}\}$.
- (a) Show that A is Σ_3 .
- (b) Show that every Σ_3 subset of \mathbb{N} is many-one reducible to A.