All questions have equal value.

- 1. For this problem, work in ZF (ZFC minus the Axiom of Choice). If κ is a cardinal number and X is a set, then $\mathcal{P}_{\kappa}(X)$ is the set of all subsets of X of size $< \kappa$. Suppose that $f : \mathcal{P}_{\omega_1}(\mathbb{R}) \to \mathbb{R}$ is one-to-one. Prove that there exists a sequence of ω_1 distinct reals.
- 2. A subset X of a limit ordinal α is stationary in α if X meets every closed, unbounded subset of α . Let κ be a regular cardinal and let $X \subseteq \kappa$ be stationary in κ . Let M be a transitive class model of ZFC such that $X \in M$. Prove that X is stationary in κ in M.
- 3. Assume V=L. Define $\langle A_{\alpha} \mid \alpha < \omega_1 \rangle$ as follows. Let A_{α} be the $<_L$ -least $A\subseteq \alpha$ such that $(\forall \beta < \alpha) A \cap \beta \neq A_{\beta}$ if such an A exists and let $A_{\alpha}=\emptyset$ otherwise. Prove that for all $A\subseteq \omega_1$ there exists an $\alpha < \omega_1$ such that $A\cap \alpha=A_{\alpha}$.
- 4. As with problem 1, work in ZF. Let AC^{fin} be the restriction of the Axiom of Choice to collections of *finite* sets. Prove that the Compactness Theorem of model theory implies AC^{fin} .
- 5. Let S(n) = n + 1 for $n \in \omega$. Prove that the theory of (ω, S) is not finitely axiomatizable.
- 6. Let $\kappa = \omega_1$ and let $T = \text{Th}(V_{\kappa}, \in)$. Prove that there is no saturated countable model of T.
- 7. Let A be an infinite recursively enumerable set. Show that $\{e \mid W_e = A\}$ is many-one complete for Π_2 . (Here W_e is the eth r.e. set in some standard enumeration.)
- 8. Let $\operatorname{Prov}(v_1, v_2)$ represent in Peano Arithmetic (PA) the set of all pairs (a, b) such that a is the Gödel number of a sentence τ and b is the Gödel number of a proof of τ from the axioms of PA. Let σ be gotten from the Fixed Point Lemma applied to $\forall v_2 \neg \operatorname{Prov}(v_1, v_2)$. In other words, let σ be a sentence such that PA $\vdash (\sigma \leftrightarrow \forall v_2 \neg \operatorname{Prov}(\mathbf{k}, v_2))$, where k is the Gödel number of σ . Let T be the theory gotten from PA by adding $\neg \sigma$ as an axiom. Show that T is ω -inconsistent: that there is a formula $\psi(v_1)$ such that $T \vdash \exists v_1 \psi(v_1)$ and $T \vdash \neg \psi(\mathbf{n})$ for each numeral n.