All eight questions have equal value. Good luck! **1.** A linear order (S, \prec) is **illfounded** if there is an infinite sequence $\langle s_i \mid i \in \omega \rangle$ of elements of S so that $s_{i+1} \prec s_i$ for each $i \in \omega$. Let φ be a sentence in the language with one binary relation symbol \prec . Suppose φ is true in an infinite illfounded linear order. Prove that φ is true in an uncountable illfounded linear order. **2.** For each complete theory T in the language of set theory let $A_T = \{\alpha < \omega_1 \mid L_\alpha \models T\}$. Prove that there is a complete theory T so that A_T is uncountable. **3.** Let U be the set of all functions f so that: $dom(f) = \omega$; and (for every $n \in \omega$) f(n) belongs to ω_n . Assuming the GCH, prove that $card(U) = \aleph_{\omega+1}$. **4.** (a) For each formula φ in the language of set theory, show that ZFC proves $\varphi \to \text{CON}(\varphi)$. (b) Show that ZFC is not finitely axiomatizable. **5.** Let $\langle \phi_e \mid e < \omega \rangle$ be a standard enumeration of all the recursive partial functions. Fix a total recursive function f. Let $B = \{e \mid \phi_e = f\}$. Prove that B is Π_2 complete. **6.** Let $\varphi(x_1,\ldots,x_n)$ be a Σ_1 formula in the language of set theory. Suppose V=L. Let $a_1,\ldots,a_n\in L_{\omega_1}$. Prove that $$\varphi(a_1,\ldots,a_n)\longleftrightarrow \varphi^{\mathbf{L}_{\omega_1}}(a_1,\ldots,a_n).$$ 7. Let A and B be r.e. sets so that $A \cap B = \emptyset$. (a) Show that there is a formula φ in the language of arithmetic so that: (i) If $n \in A$ then $\mathsf{PA} \vdash \varphi(\tilde{n})$; and (ii) If $n \in B$ then $\mathsf{PA} \vdash \neg \varphi(\tilde{n})$. (\tilde{n} here is the formal term in the language of arithmetic for the nth successor to 0.) (b) Is it possible to strengthen the above to require also: (iii) For every $n \in \omega$, $(PA \vdash \varphi(\tilde{n}) \text{ or } PA \vdash \neg \varphi(\tilde{n}))$?