Please answer all eight questions.

Question 1. Work in ZFC. Prove that there is a limit ordinal α so that (a) α is countable; and (b) there is no bijection $f:\omega\to\alpha$ with $f\in L_{\alpha+1}$.

Question 2. Let $M \subseteq N$ be transitive models of ZFC. Let $r \in M$ be a relation and suppose that $(r \text{ is wellfounded})^M$. Prove that $(r \text{ is wellfounded})^N$.

Question 3. Work in ZF without AC.

(a) A non-principal filter over ω is a set $\mathcal{F} \subseteq \mathcal{P}(\omega)$ so that $(\forall n \in \omega \text{ and } \forall x, y \subseteq \omega) \{n\} \notin \mathcal{F}; x, y \in \mathcal{F} \to x \cap y \in \mathcal{F}; \text{ and } x \supseteq y \in \mathcal{F} \to x \in \mathcal{F}.$ Let $a_0, \ldots, a_k \subseteq \omega$. Prove that there is a non-principal filter \mathcal{F} over ω so that for every $i \leq k$, either $a_k \in \mathcal{F}$ or $\omega - a_k \in \mathcal{F}$.

(b) A non-principal filter \mathcal{F} over ω is called an ultrafilter if for every $a \subseteq \omega$ either $a \in \mathcal{F}$ or $\omega - a \in \mathcal{F}$. Assume the compactness theorem: for every language \mathcal{L} and every set Γ of sentences in \mathcal{L} , if every finite $\Delta \subseteq \Gamma$ has a model, then so does Γ . Prove that there is a non-principal ultrafilter over ω .

Question 4. Let \mathfrak{A} be a saturated infinite model, and let $a_0, \ldots, a_k \in A$. Prove that there is a (strict) substructure $\mathfrak{B} \subsetneq \mathfrak{A}$ and $\pi \colon \mathfrak{A} \to \mathfrak{B}$ so that (a) π is an isomorphism; and (b) $\pi(a_0) = a_0, \ldots, \pi(a_k) = a_k$.

Question 5. Let $W_e = \{x \mid \phi_e(x) \downarrow\}$ be the *e*th recursively enumerable set, in the standard coding. Prove that there is a recursive partial function f(e) such that

if W_e is infinite, then $f(e) \downarrow$, $f(e) \in W_e$, and f(e) > 2e.

Question 6. (a) Prove that there is a number e such that $W_e = \{e\}$.

(b) Prove that Question 5 cannot be strengthened to demand that the required function f be total, i.e.,: there is no total, recursive function f such that

if
$$W_e$$
 is infinite, then $f(e) \in W_e$, and $f(e) > 2e$.

Question 7. Let \mathcal{L} be the language of set theory. Let T be a consistent extension of ZFC, in the language \mathcal{L} . Prove that T is not finitely axiomatizable. Point out a part of the argument where it is important that all the sentences of T are in the language of set theory (as opposed to some larger language \mathcal{L}^*).

Question 8. A sentence ϕ in the language of arithmetic is Π_1 if it is of the form

$$\phi \equiv (\forall x_1) \cdots (\forall x_n) \theta$$

where θ has only bounded quantifiers. Let P be Peano arithmetic, and prove that for every Π_1 sentence ϕ ,

$$P, \operatorname{Con}_P(\ulcorner \phi \urcorner) \vdash \phi,$$

where $\operatorname{Con}_P(\lceil \phi \rceil)$ expresses in a natural way the consistency of ϕ with Peano arithmetic, in other words it is $\neg \operatorname{Prov}_P(\lceil \neg \phi \rceil)$.