Qualifying Examination
LOGIC
Spring 2006

All questions have equal value, so try to answer all of them.

You may (and you will need to) use some of the “big” theorems of logic
(the Godel Completeness and Incompleteness Theorems, Tarski’s Theorem,
Kleene’s Normal Form Theorem, the Condensation Lemma, etc.), and when
you do, make sure you quote them correctly.

You may also assume that Peano arithmetic (PA) is sound (i.e., its theo-
rems are all true in its standard interpretation) and that Zermelo-Fraenkel
Set Theory with Choice (ZFC) is consistent.

Question 1. Consider the theory T of an infinite, discrete linear order-
ing without end points. Show that there is a countable model of T' into
which every model of T' can be elementarily embedded. Conclude that T is
complete.

Question 2. Give an example of a countable complete theory with ex-
actly three non-isomorphic countable, infinite models.

Question 3. Suppose A is an infinite, r.e. but not recursive set of natural
numbers. You must prove your answers to the following T or F questions.
(|B| is the cardinality of the set B.)

3a. True or False: there is a total recursive function f(z) such that for
every x,
{te A|t < f(x)}| 2 =
3b. True or False: there is an unbounded, total recursive function f(z)
such that for every z,
fteA|t< f(z)} ==
Question 4. Assume that ZFC has a well founded model, i.e., there
exists a set A and a well-founded relation E on A such that the structure
(A, E) is a model of ZFC; prove that ZF'C has a least transitive model, i.e.,

there exists a transitive set M such that (M,e [ M) is a model of ZFC, and
M is a subset of every other such transitive model of ZFC.

Question 5. For each set of ordinals A, let L[A] = J; L¢[A], where
Lo[A] =0,

Ly1[A] = {X < Ly[A]

| X is definable (with parameters) in
(LylA], AN Ly[A], € N Ly[A] x Ly[A])},

and for limit A, Ly = gy Le[A]-

Prove that if A C w; and X C w is a set of finite ordinals, then

X e L[A] = (3¢,n<wi)[X € Ly[AN¢]].



Question 6. For each sentence 6 of the language of Peano arithmetic, let
r97 be its Gédel number, in some canonical way of assigning Godel numbers
to formulas, and let

Tea = {767 | PA} 6},
Rpa = {767 | PA +- —6}.
(These are the sets of provable and refutable sentences of PA))

6a. Show that Tps and Rpa are recursively enumerable.

6b. Show that Tps and Rpa are recursively inseparable, i.e., there is no
recursive set C such that
Tpa C C and Rppa NC = 0.

Hint: You may find it easier to first prove that there exists a pair of r.e.
recursively inseparable sets of natural numbers, and then use a basic result
about the representability of r.e. sets in PA.

Question 7. Let A(n) be the numeral of n, i.e., some canonical (closed)
formal term of PA which denotes the number n; let Conps be the formal
sentence of PA which asserts the consistency of PA; and let Prov(v) be a
formula of PA which defines (in the canonical way) the relation “v is the
Gédel number of a provable sentence”, so that for each sentence ¢

PA |= Prov(A(T67)) <= PA 4.

Determine which of the following implications are provable in PA, and prove
your answers. (You may refer to any standard theorems about Peano Arith-
metic, after you state them correctly.)

(a) Conpa — Prov(A("Conpa™)).
(b) Conps — —Prov(A("Conpa™)).
(c) Prov(A("Conpa ™)) — Conpa.

(d) =Prov(A("Conpa ™)) — Conpa.

Question 8. Let p.(z) be the recursive partial function with code e and
We = {z | we(z) L},
as usual, and suppose that f(z) is a recursive partial function such that
We =W, = f(e)=f(m)

Prove that if W, is infinite and f(e) |, then there is a finite Wy, C W, such
that f(e) = f(m). Hint. Given We, apply the Second Recursion Theorem
to the recursive partial function

g(m LE) — {‘Pe(-’lf)’ if (Vy < m)ﬂ[Tl(f,m,y) & U(y) = f(e)]
’ 1 (diverges), otherwise,

where f(2) = ¢;(2) = UGuyT1(f,%,9)):



