Try to answer all 8 questions.

You should work in ZFC. Thus, in particular, you may assume that Peano arithmetic (PA) is sound (i.e., its theorems are all true in its standard interpretation).

Note: Some problems or parts of problems are harder than others. If you cannot quickly solve a problem or part of it, move onward and return to it later.

Problem 1. Construe \mathbb{Z} as a first-order structure in the language $\{0, +, -\}$ of abelian groups.

- (1a) Determine all elementary substructures of \mathbb{Z} .
- (1b) Which elements of \mathbb{Z} are definable (without parameters) in \mathbb{Z} ?
- (1c) Are \mathbb{Z} and $\mathbb{Z} \times \mathbb{Z}$ elementarily equivalent?
- (1d) For every prime number p let $\mathbb{Z}_{(p)}$ be the subgroup of $(\mathbb{Q}, 0, +, -)$ consisting of all rational numbers of the form a/b where $a, b \in \mathbb{Z}, b \neq 0$, with b not divisible by p. Let $Z := \prod_p \mathbb{Z}_{(p)}$, where the product is finite support (i.e., for each of its elements, all but finitely many coordinates are 0). Is there an elementary embedding $\mathbb{Z} \to Z$?

Problem 2. Let α be a bijection between the set of finite sequences of 0s and 1s and \mathbb{N} , and for $f: \mathbb{N} \to \{0,1\}$ let $f^*: \mathbb{N} \to \mathbb{N}$ be given by $f^*(n) = \alpha(f \upharpoonright \{0, \dots, n-1\})$.

- (2a) Show: $(f^*)_{f: \mathbb{N} \to \{0,1\}}$ is a continuum size family of almost disjoint functions, i.e., for $f \neq g$ there are only finitely many n such that $f^*(n) = g^*(n)$.
- (2b) Show that every proper elementary extension of the first-order structure $(\mathbb{N}, (f^*)_{f: \mathbb{N} \to \{0,1\}})$ is uncountable.

Problem 3. Let \mathcal{L} , \mathcal{L}' be first-order languages with $\mathcal{L} \subseteq \mathcal{L}'$, let T' be an \mathcal{L}' -theory, and let \mathbf{C} be the class of all \mathcal{L} -structures which can be expanded to a model of T'. Show: if \mathbf{C} is closed under taking substructures, then \mathbf{C} is universally axiomatizable. (Hint: consider the theory T consisting of all universal \mathcal{L} -formulas φ with $T' \models \varphi$.)

Problem 4. Prove that the following are equivalent for subsets A of \mathbb{N} .

- (1) A is Δ_2^0 .
- (2) A is recursive in K, where $K = \{e \mid e \in W_e\}$.

(3) There is a recursive function $f: \mathbb{N} \times \mathbb{N} \to \{0, 1\}$ such that for each $n \lim_s f(s, n)$ exists and $n \in A \leftrightarrow \lim_s f(s, n) = 1$.

Problem 5.

- (5a) Does every recursive partial function have a recursive total extension? Prove your answer.
- (5b) Classify in the arithmetical hierarchy the set of all numbers e such that φ_e has a primitive recursive extension. Here φ_e is the eth partial recursive function in some standard enumeration.

Problem 6. In some standard Gödel numbering of the language of PA, let Prov(v) be a formula of PA that defines (in the canonical way) the property "v is the Gödel number of a sentence provable in PA." Let Con(PA) be the sentence $\neg Prov(n)$, where n is the numeral of the Gödel number of 1 = 0. Loeb's Theorem for PA states that, for any sentence σ , if

$$PA \vdash (Prov(\sigma) \rightarrow \sigma),$$

then PA $\vdash \sigma$.

- (6a) Sketch a proof of Loeb's Theorem from the 2nd Incompleteness Theorem.
 - (6b) Deduce from Loeb's Theorem that $PA \not\vdash Con(PA)$.

Problem 7. Assume that (M, R) is a well-founded model of ZFC.

- (7a) Prove that $(M,R) \models$ "There is a model of ZFC."
- (7b) Must (M, R) satisfy "There is well-founded model of ZFC," i.e., does our assumption imply that (M, R) satisfies this sentence?
- (7c) Must (M,R) have a proper substructure $(N,R \upharpoonright N)$ such that $(N,R \upharpoonright N) \models \text{ZFC}$ and N is transitive relative to (M,R) (i.e., such that if $b \in N$ and R(a,b) then $a \in N$)? It might help to think about the special case that M is a transitive set and R is $\in \upharpoonright M$, when "transitive relative to (M,R)" just means "transitive."

Problem 8. To recall some definitions, let α be a limit ordinal. The *cofinality* of α , $cf(\alpha)$, is the least cardinal λ such that there is an $f:\lambda\to\alpha$ whose range is unbounded in α . The ordinal α is regular if $cf(\alpha)=\alpha$. A subset of α is a club in α if it is unbounded in α and contains the supremum of each of its subsets that is bounded in α . A subset of α is stationary in α if it meets every club in α . You may use Fodor's Theorem, which says that if $g:\alpha\to\alpha$ and $\{\beta<\alpha\mid g(\beta)<\beta\}$ is stationary in α , then g is constant on a set stationary in α .

Let κ be an uncountable regular cardinal, and let S be the set of all limit ordinals $\alpha < \kappa$ such that that $\mathrm{cf}(\alpha) = \omega$. For each $\alpha \in S$, let $f_{\alpha} : \omega \to \alpha$ have unbounded range.

- (8a) Prove that there is an $n \in \omega$ such that, for each $\beta < \kappa$, $\{\alpha \in S \mid f_{\alpha}(n) \geq \beta\}$ is stationary in κ .
 - (8b) Prove that S is the union of κ disjoint sets stationary in κ .