Qualifying Examination
LOGIC
Spring 2011

Try to answer all questions.

You may (and you will need to) use some of the “big” theorems of logic (the
Gédel Completeness and Incompleteness Theorems, the Omitting Types
Theorems, Tarski’s Theorem, Kleene’s Normal Form Theorem, the Conden-
sation Lemma, etc.), and when you do, make sure you quote them correctly.

You may also assume that Peano arithmetic (PA) is sound (i.e., its theo-
rems are all true in its standard interpretation) and that Zermelo-Fraenkel
Set Theory with Choice (ZFC) is consistent.

Note: Some problems or parts of problems are harder than others, or
require using methods from more than one part of the subject for their
golution. If you cannot quickly solve a problem or part of it, move onward
and return to it later.

Problem 1. Let e (z, y, w) be a formula in the signature 7 = (0, S, +, )
of the language of Peano arithmetic which naturally defines the exponential
function, so that in particular, )

Et=n <= (N,0,5+, )} F wexpk,m,n], PAEF (Vm,y)(ﬂfw)goexp(m,y, w).

Let exp be a fresh, binary function symbol. Let PA®™P be the theory in the
expanded sighature (0,5, +,-,exp} whose axioms are all the axiom of PA,
all instances

(90,9 &(v2) (@, ) — ¥(S(2), 9] - (Yo)viz, D),

of the Induction Axiom Scheme where ¥(x, ) is any (0, S, +, -, exp)-formula,
and the eharacteristic axiom

(V) (YY) Pexp (2, ¥, exp(T, 1))

Prove (in outline} that PA®P is a conservative extension of PA: le., for
every (0,.5,+, -, )-sentence 6,

PAL 8§ <= PA™P? |- 4.

Problem 2. Let £ be a first-order language, N an L-structure and M a
substructure of N,

{(2a) Suppose that for all finite subsets A of M and every ¢ € N there is
an automorphism o of N with o{a) = a for all a € A and o(c} € M. Show
that M is an elementary subsiructure of N,

(2b) Show by an example that the criterion for M < N in (2a), although
sufficient, is not necessary.




Problem 3. Let £ = {P} be a first-order language where P is a unary
relation symbol, and

T::{Hml-uﬁrn( /\ - =T A /\ sz-):nEN},

I<i<jsn 1<i<n
= Eml--vﬂmn /\ —|:U-g;=55'j/\ /\ ‘“WP.’IQ; nelN
1<i<j<n 1<i<n

(3a) Prove that T and 7 are both incomplete.
{(3b) Prove that the union 7' U 7" is complste.

Problem 4. Asusual, ¢, : N — N isthe (unary) recursive partial function
with code {Godel number) e.

(4a) Prove that there is some number e such that for all z, w.(z) = e.
(4b) Classify in the arithmetical hierarchy the set

A= {e: (Vz)lp(z) =€]}.

Problem 5. Fix natural formalizations (in PA} of the proof relations of
PA and ZFC and set

Cpaf = *“fis a theorem of PA”,
Cheeyy = “¢ is a theorem of ZFC".

Both Opa@ and Ozpcy) are sentences of PA.
For each PA-sentence €, let

4* = the natural translation of § in the language of ZFC.

{5a) For each of the following four provability claims, either prove that it
is true for every PA-sentence & or provide a counterexample.

(a) PA - DPAH — DZFCQ*-
(b) PA ljzpcg* hacs DPAQ.

() ZFCH (Dzrct” — a)*
(@) ZFC - ([Tpa8 9)*.
{5b) Let PA™ be the extension of PA by the strong Reflection Principle
PA* = PAU {EZ]ZFCB* —0:0isa PA-sentence}.

{a) True or false: ZFC |- Consis(PA)*. Prove you answer.
{b) True or false: PA™ I~ Consis(ZFC). Prove you answer.
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Problem 6. Recall that a (binary) relation R € A x A on a set A is
{strictly) well-founded if

(1) D#XC A= (Jze X}VyeX)-R(y,x).

A wellordering of a set A is a linear ordering < € A x 4 whose strict
part < vy is well-founded. A set A is wellorderable if there exists some
wellordering < of A.

{6a) Prove in ZF (without the Axiom of Choice) that if R is well-founded,
then there exists a unique function

dr: A — V such that for all x € A, dg(z) = {dR(y) : R(y,a:)},

often called Mostowski map of R. (It is enough here to quote correctly some
appropriate, general theorem which justifies this recursive definition.)

(6b) Prove in ZF 4+ Axiom of Foundation (without the Axiom of Choice)
that if B is transitive and wellorderable, then there is a well-founded relation
R C X\ x A on some ordinal number A such that

B = dp]N] = {dn(n) :n /\}. |

(6c) Work in ZF + Axiom of Foundation. Prove that if the powerset
P(A) of every wellorderable set is wellorderable, then the Axiom of Choice
is true. Hint: Show by ordiral induction that every “partial universe” Vg is
wellorderable. Part (6b) is used to deal with the case of limit £.

Problem 7. Consider the two formulas which can be used to define well-
founded relations in set theory:

wfi{R) <=3 Relation(R) &(VX)[@ # X — (Jr € X)(Vy € X)=(y,z) € R,
wfy(R) <= Relation(R) &(3f : Field(R) :— Ordinals)
(Yo, y € Field(R))[(z,v) € R — f(=z) € f(y)]

where Relation{R), Function(f), Field(R) and the class of ordinal numbers are
defined as usual. The equivalence of these two formulas is a basic result of
ZF (without the Axiom of Choice) and it implies the ZF-absoluteness of the
well-founded relation, i.e., if M is a transitive set {or class) and the structure
(M, €l M) satisfles some specified, finite subset of the axioms of ZF, then
for every relation R e M,

R is well-founded <= (M,€{M) = wh[R] < (M,e[M) | wh[R].
Let wy be the first uncountable ordinal.
(7a) Prove that the set

A= {a € wy t Ly = (VR)Wh(R) & wfg(R)}}

ig closed and unbounded in w;.

(7b) Prove that for every ordinal o,
Loti = (YR)[Whi(R) « wha(R)].




Problem 8. A function m: N —» N is a provably in PA recursive permu-
tation of N if f = @, for some e such that
PA - (Yz}(Ty) Tale, 2, ) &(vw) (T} (Zy) Ta(e; 2, y) & U(y) = w],
with the usual notation. Let
Th{PA) = {767 : PAF 8}, Th{ZFC)={"¢': ZFCFp}

where 8, are sentences in the relevant signatures and T67,T¢™ are their
Godel numbers. Prove that there is a provably recursive in PA permutation
of N such that

e € Th{ZFC) < w(e) € Th(PA).




