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Try to answer all questions.
You may (and you will need to) use some of the “big” theorems of logic (the

Gödel Completeness and Incompleteness Theorems, the Omitting Types
Theorems, Tarski’s Theorem, Kleene’s Normal Form Theorem, the Conden-
sation Lemma, etc.), and when you do, make sure you quote them correctly.

You may also assume that Peano arithmetic (PA) is sound (i.e., its theo-
rems are all true in its standard interpretation) and that Zermelo-Fraenkel
Set Theory with Choice (ZFC) is consistent.

For a formula ϕ in the language of PA, #(ϕ) is the Gödel number of ϕ;
pϕq = ∆#(ϕ) is the numeral which names this number; and ProvablePA(pϕq)
is the natural formalization in PA of “ϕ is provable in PA”.

Two of the problems are about trees. For the purposes of this exam, a
tree on a set X is any set T ⊆ X<ω of finite sequences from X (the finite
branches of T ) which is closed under initial segments,

(u0, . . . , um−1, um, . . . , un) ∈ T =⇒ (u0, . . . , um−1) ∈ T.
An (infinite) branch of T is any function f : ω → X such that for all n,
(f(0), . . . , f(n− 1)) ∈ T .

Problem 1. A proof system (for arithmetic) is any set P of non-empty
finite sequences such that

(u0, . . . , un, θ) ∈ P
=⇒ u0, . . . , un ∈ ω and θ is a sentence in the language of PA,

and the set of codes

codes(P) = {〈u0, . . . , un,#(θ)〉 : (u0, . . . , un, θ) ∈ P}
is recursive. We write

P ` θ ⇐⇒ (∃u0, . . . , un)[(u0, . . . , un, θ) ∈ P],

A proof system P is

• sound (for the standard model), if P ` θ =⇒ (ω, 0, 1,+, ·) |= θ;
• consistent, if there is no θ such that P ` θ and P ` ¬θ;
• complete, if for every θ, either P ` θ or P ` ¬θ.

You must prove your answers to each of the following questions:

(1a) True or False: there is a complete and sound proof system.

(1b) True or False: there is a complete and consistent proof system.
(1c) True or False: there is a complete and consistent proof system which

extends Peano arithmetic, i.e.,

PA ` θ =⇒ P ` θ.
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Problem 2. The Fixed Point Lemma (for arithmetic) says that if χ(v0)
is any formula in which only v0 can occur free, then there is a sentence ϕ
such that

PA ` ϕ↔ χ(pϕq).

(2a) Prove the following generalization of the Fixed Point Lemma:

For any two formulas of arithmetic χ1(v0, v1), χ2(v0, v1) in which only
v0, v1 can occur free, there are sentences ϕ,ψ of arithmetic such that

PA ` ϕ↔ χ1(pϕq, pψq), PA ` ψ ↔ χ2(pϕq, pψq).

Hint. This is (apparently) not a simple Corollary of the Fixed Point
Lemma, but it can be easily proved by adapting the proof of the Fixed
Point Lemma.

(2b) Suppose ϕ,ψ are sentences of PA such that

PA ` ϕ↔ ¬ProvablePA(pψq),

PA ` ψ ↔ ProvablePA(pϕq).

Determine whether ϕ is provable (in PA), true but unprovable or false,
and similarly for ψ.

Problem 3. Suppose ≤ is a recursive wellordering of the set of natural
numbers ω. Prove that we can assign to each n ∈ ω a theory Tn in the
language of PA, such that

(1) If n0 is the ≤-least member of ω, then Tn0 = PA.
(2) Each Tn is axiomatizable and sound (for the standard model).
(3) The theories increase in strength as n increases in the given wellorder-

ing, i.e.,

n < m =⇒ {θ : Tn ` θ} ( {θ : Tm ` θ}
Hint : Use the 2nd Recursion Theorem to find a number e such that the

result holds with
Tn = {θ : ϕe(n,#(θ)) = 0}.

Problem 4. Let L be a countable language. An L-structure M is ω-
saturated if M realizes every type over every finite subset of M . M is
ω-homogeneous if, for any two tuples ~a and ~b with typeM(~a) = typeM(~b)
and any c ∈M , there is a d ∈M such that typeM(~a, c) = typeM(~b, d)

(4a) Prove that every ω-saturated L-structure is ω-homogeneous.
(4b) Prove that every countable L-structure has a countable ω-homogeneous

elementary extension.
(4c) Prove or give a counterexample: every countable L-structure has a

countable ω-saturated elementary extension.
(4d) Prove that if M is countable, ω-homogeneous and typeM(~a) =

typeM(~b), then there is an automorphism of M which takes ~a to ~b.
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Problem 5. For any tree T on a set A, let

AT = (A, T1, T2, T3, . . .)

where each Tn is the set of branches of T of length n,

Tn(x0, . . . , xn−1) ⇐⇒ (x0, . . . , xn−1) ∈ T.

(5a) Prove that if A is countable and T has arbitrarily long finite branches,
then AT has an elementary extension M in which

TM = {∅} ∪
⋃

n T
M
n

has an infinite branch.
(5b) Suppose A is countable and for every n,

AT |= (∀x0)(∃y0) · · · (∀xn)(∃yn)Tn(x0, y0, . . . , xn, yn).

Prove that AT has an elementary extension M such that

(∗) AT |= (∀x0)(∃y0)(∀x1)(∃y1) · · ·
∧

n Tn(x0, y0, . . . , xn, yn).

(It is part of the problem to define precisely the meaning of the infinitary
sentence in (∗).)

(5c) Prove that the relation

I(T ) ⇐⇒ T has an infinite branch

is ZFC-absolute; i.e., for some finite subset Φ of the axioms of ZFC and
every transitive set or class M which satisfies Φ, if T ∈M , then

M |= I(T ) ⇐⇒ V |= I(T )

where V is the class of all sets.

Problem 6. A tree T on a set X is finitely splitting if for every sequence
(u0, . . . , um−1) ∈ T ,

{x ∈ X : (u0, . . . , um−1, x) ∈ T is finite}.

(6a) Prove that every infinite, finitely splitting tree has an infinite branch.
A tree T on {0, 1} is recursive if the set of sequence codes

{〈u0, . . . , un−1〉 : (u0, . . . , un−1) ∈ T}
(relative to a standard, recursive coding of finite sequences) is recursive.

(6b) Prove that every infinite recursive tree on {0, 1} has a ∆0
2 infinite

branch.

(6c) Construct an infinite, recursive tree on {0, 1} which has no recursive
infinite branch.
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Problem 7. A formula of set theory is Σ2 if it is of the form

ϕ ≡ (∃y1)(∃y2) · · · (∃yn)ψ

where ψ is ∆0, i.e., it only has bounded quantifiers (∃t ∈ w), (∀t ∈ w).

Let α be an ordinal number such that Lα ≺Σ2 L, i.e., such that, for all Σ2

formulas ϕ(x1, . . . , xn),

∀x1 ∈ Lα . . .∀xn ∈ Lα[ϕLα(x1, . . . , xn) ↔ ϕL(x1, . . . , xn)].

Prove that all the axioms of ZFC except perhaps Replacement are true in
Lα.


