Qualifying Examination LOGIC

Winter 2013

DO ALL EIGHT PROBLEMS.

1. Let \mathcal{L} be a language whose only symbol is a unary function symbol f. For each \mathcal{L} -sentence σ , let $\operatorname{Spec}(\sigma)$ be the spectrum of σ , i.e., the set of cardinalities of finite models of σ . (The *cardinality* of an \mathcal{L} -structure is the cardinality of its underlying set.) Let $a \geq 0$ and $b \geq 1$ be integers. Give an \mathcal{L} -sentence σ such that $\operatorname{Spec}(\sigma)$ is the set of positive integers of the form a + bn with $n = 0, 1, 2, \ldots$

2. Let \mathcal{L} be a language, and let \mathfrak{C} be a class of \mathcal{L} -structures. The *theory* of \mathfrak{C} is the set $\operatorname{Th}(\mathfrak{C})$ of \mathcal{L} -sentences σ with $\mathbf{A} \models \sigma$ for all $\mathbf{A} \in \mathfrak{C}$, and the *asymptotic theory* of \mathfrak{C} is the set $\operatorname{Th}_a(\mathfrak{C})$ of \mathcal{L} -sentences σ with $\mathbf{A} \models \sigma$ for all but finitely many $\mathbf{A} \in \mathfrak{C}$.

(a) Suppose that \mathfrak{C} consists of finite \mathcal{L} -structures and contains only finitely many structures of cardinality n, for each natural number n. Show that the models of $\operatorname{Th}_{a}(\mathfrak{C})$ are exactly the infinite models of $\operatorname{Th}(\mathfrak{C})$.

(b) Suppose \mathcal{L} is the empty language (i.e., no constant, function, or relation symbols), and \mathfrak{C} is the class of \mathcal{L} -structures whose underlying set is of the form $\{1, \ldots, n\}$ for some integer $n \geq 1$. Show that $\operatorname{Th}_{a}(\mathfrak{C})$ is complete.

3. Let *T* be a countable consistent set of sentences in some language \mathcal{L} , and consider the space $S_n(T)$ of complete *n*-types of *T* (over \emptyset) equipped with the Stone topology. (The basic open sets are those of the form $\{\Sigma(\vec{x}) \mid \varphi(\vec{x}) \in \Sigma(\vec{x})\}$ for formulas $\varphi(\vec{x})$.) Let *X* be a subset of $S_n(T)$ which is meager, i.e., *X* is the union of countably many sets whose closure has no interior. Show that *X* can be omitted in *T* (i.e., there is a model of *T* which omits each $p \in X$).

4. Classify $\{(a, b) \mid W_a \subseteq W_b\}$ in the arithmetical hierarchy.

5. Fix a Gödel numbering of the language of PA such that each natural number n is the Gödel number of a sentence σ_n . For each n, let C be a recursive function such that $\sigma_{C(n)}$ is the sentence Consis(n) expressing the consistency of Th(n), the set of consequences of $\{\sigma_m \mid m \in W_n\}$. Prove that there is an n such that Th(n) is the set of consequences of PA \cup {Consis(n)}.

6. Let σ be a sentence of the language of set theory. Assume that there is a primitive recursive function f such that

 $\operatorname{ZFC} \vdash (\forall n)$ (there is a countable, transitive model of $\operatorname{ZFC}_{f(n)}$

 \rightarrow there is a countable, transitive model of $\operatorname{ZFC}_n \cup \{\sigma\}$).

Here ZFC_n is the set of the first *n* axioms of ZFC. Explain how the arithmetical formalization of

If ZFC is consistent, then so is $ZFC \cup \{\sigma\}$

is provable in Peano Arithmetic.

Hint: Use the formalization of the fact that the instances of Reflection are provable in ZFC.

7. Assume V = L.

(a) Is uncountability absolute for uncountable transitive models of ZFC_n for sufficiently large n?

(b) Is having uncountable cofinality absolute for uncountable transitive models of ZFC_n for sufficiently large n?

Hint: For (b), use Reflection and an elementary chain to get a model of size \aleph_1 whose ω_2 has cofinality ω .

8. Prove that $2^{\aleph_0} \neq \aleph_{\omega}$.

Hint: Let $X = \{f \mid f : \omega \to \omega_{\omega}\}$. Show that if $2^{\aleph_0} \geq \aleph_{\omega}$ then $2^{\aleph_0} \geq \operatorname{card}(X)$. Then prove that $\operatorname{card}(X) > \aleph_{\omega}$. To do this, assume that h is a surjection of ω_{ω} onto X and get a contradiction. (If you choose to use König's Theorem rather than following the hint, then don't just state König's Theorem. Prove it.)