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Please answer all questions. You must prove all your answers, even when this is not
explicitly requested. In each problem, the level of details you give and your choice of which
standard results to prove and which to use without proof should be appropriate to the
question; you have to demonstrate that you know the arguments relevant to the question.

Problem 1. Let G be a (multiplicatively written) group, viewed as a structure in the
language which has a single constant symbol 1 interpreted as the identity element of G and
a binary function symbol · interpreted as the group operation of G. For g ∈ G we write
gn = g · g · · · g (n times), so g0 = 1, g1 = g. One says that an element g of G has finite order
if gn = 1 for some n ≥ 1, one says that G is a torsion group if every element of G has finite
order, and G is torsion-free if the only element of finite order of G is 1.

(1a) Show that there exist elementarily equivalent groups G and H such that G is a torsion
group, but H is not.

(1b) Suppose that every nonempty ∅-definable subset of the group G contains an element
of finite order. Show that then G is elementarily equivalent to a countable torsion group.

(1c) Show that there is a set Σ of sentences whose models are exactly the torsion-free
groups. Prove that there cannot be a finite such set Σ.

Problem 2. Let L be a countable first-order language and T be a complete L-theory without
finite models.

(2a) Show that the elementary substructures of atomic L-structures as well as unions of
elementary chains of atomic L-structures are atomic.

(2b) Call an L-structure minimal if it has no proper elementary substructure. Show that
if T has a countable atomic model which is not minimal, then T has an atomic model of size
ℵ1.

(2c) Show that if M is a minimal model of T and M′ is a prime model of T , then M ∼= M′.

(2d) Show that if T has a prime model which is not minimal, then T has an atomic model
of size ℵ1.

(2e) Give an example where the hypothesis of (d) holds.

Problem 3. Assuming that ZFC is consistent, prove that it is not finitely axiomatizable.

Problem 4. Assume V = L.

(4a) Prove that Lω2 is Σ1 elementary in L.

(4b) Prove that there is a function f : ω1 → ω1, ∆1 definable over Lω1 , so that for every
A ⊆ ω1 and every Σ1 formula φ, there is a club C ⊆ ω1 so that for every α ∈ C, if L |= φ[A]
then Lf(α) |= φ[A ∩ α].

Problem 5.

(5a) Let A be a model of ZFC − Powerset. Prove that there is a Σ1 formula φ so that
{x ∈ |A| | A |= φ[x]} is not Π1 definable (even with parameters) over A.

(5b) Prove that in Question (4b) one cannot strengthen the conclusion to require that
L |= φ[A] iff Lf(α) |= φ[A ∩ α].



Problem 6. Say that a function s : ω → 2<ω converges to x ∈ 2ω if for every k, s(n) � k is
eventually equal to x � k as n → ∞. (Here 2<ω and 2ω are respectively the sets of finite and
infinite binary sequences.)

(6a) Prove that there is a recursive s : ω → 2<ω which converges to ∅′.
(6b) Let A ⊆ ω be ∆0

2. Prove that there is a recursive t : ω → 2<ω which converges to the
characteristic function of A.

Problem 7. By a permutation we mean a bijection N → N. ϕe (e ∈ N) below is the
standard enumeration of the recursive partial functions. Prove the following:

(7a) The set of recursive permutations forms a group Π under composition: the composi-
tion of two recursive permutations is recursive, and the inverse of every recursive permutation
is recursive.

(7b) Not every permutation is recursive.

(7c) The set P = {e ∈ N : ϕe ∈ Π} is not r.e.

(7d) There is no r.e. subset P ′ of P such that {ϕe | e ∈ P ′} is equal to Π.

(7e) There is no r.e. subset P ′ of P such that {ϕe | e ∈ P ′} generates Π. (In particular,
Π is not finitely generated.)

Problem 8. Recall that K = ∅′ = {e ∈ ω | ϕe(e) ↓}. Determine which of the following are
true for all m. Provability is formalized using Gödel codes in the usual way, ∆m is the term
denoting m, and t ∈ K for a term t is the natural formalization of the statement that the
interpretation of t belongs to K.

(8a) If PA ⊢ ∆m ∈ K then m ∈ K.

(8b) If m ∈ K then PA ⊢ ∆m ∈ K.

(8c) PA proves that if PA ⊢ ∆m ∈ K then ∆m ∈ K.

(8d) PA proves that if ∆m ∈ K then PA ⊢ ∆m ∈ K.

(8e) If m ̸∈ K then PA ⊢ ∆m ̸∈ K.
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