DO NOT FORGET TO WRITE YOUR SID NO. ON YOUR EXAM.

ALL PROBLEMS HAVE EQUAL VALUE. There are 7 problems.

MA: Do any 5 problems.

Ph.D.: Do 5 problems and only 3 of them from 1, 2, 3, and 4.

[1] (a) Derive an expression for the truncation error of the standard second order difference approximation to $\frac{d^2u}{dx^2}$,

$$\frac{d^2u}{dx^2} \simeq \frac{u_{n+1} - 2u_n + u_{n-1}}{h^2}$$

where u_n is the value of a function u at the nth point of a grid with mesh size h.

(b) Using the result in (a), derive the order of the local truncation error of the scheme

$$\frac{u_{n+1} - 2u_n + u_{n-1}}{h^2} = f_n + \frac{h^2}{12} \left(\frac{f_{n+1} - 2f_n + f_{n-1}}{h^2} \right)$$

when used to solve the differential equation

$$\frac{d^2u}{dx^2} = f \qquad u(a) = u(b) = 0$$

[2] Consider using Newton's method to find the root of the polynomial

$$p(x) = (x-1)^2 = x^2 - 2x + 1$$

- (a) Does the Newton iteration converge for all initial guesses? Justify your answer.
- (b) When it converges, what is the rate of convergence? Justify your answer.

[3] Let A be a symmetric positive definite matrix. At the end of the first step of the LU factorization of A without pivoting, we have

$$A^{(1)} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \hline 0 & & & & \\ \vdots & & & A' & \\ 0 & & & & \end{pmatrix}$$

- (a) Prove that A' is also symmetric and positive definite.
- (b) Using the result from (a), prove that the LU factorization of a symmetric positive definite matrix obtained without pivoting always exists.
- [4] Euler's method for solving $\frac{dy}{dt} = f(y)$ is given by

$$y_{n+1} = y_n + dt \ f(y_n) \qquad n \ge 1$$

Consider two methods of using this scheme to advance from y_n to y_{n+1} ; $y^{(1)}$ uses a step size of dt, while $y^{(2)}$ uses two steps of size dt/2 (see Figure 1).

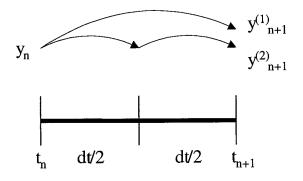


Figure 1.

- (a) Let $y_{n+1}^{(*)} = \alpha y_{n+1}^{(1)} + \beta y_{n+1}^{(2)}$, how should the values of α and β be chosen so that $y_{n+1}^{(*)}$ is a more accurate solution to the differential equation than either $y_{n+1}^{(1)}$, or $y_{n+1}^{(2)}$? Justify your answer.
- (b) For your choice of α and β what is the order of the local truncation error associated with the scheme that advances the solution using $y_{n+1}^{(*)} = \alpha y_{n+1}^{(1)} + \beta y_{n+1}^{(2)}$? What is the order of the global error of the method?

[5] Consider the initial value problem

$$\begin{array}{rcl} u_t & = & v_x \\ v_t & = & 0 \end{array}$$

to be solved for $0 \le x \le 1$, $t \ge 0$, with initial and boundary and conditions,

$$\begin{array}{rcl}
u(x,0) & = & \phi(x) & u(1,t) & = & u(0,t) \\
v(x,0) & = & \psi(x) & v(1,t) & = & v(0,t)
\end{array} \tag{4.1}$$

where $\phi(x)$ and $\psi(x)$ are smooth and periodic functions.

- (a) Can you write a stable, convergent finite difference scheme for this problem? Explain your answer and give an example of such a scheme if one exists.
- (b) Consider the related system

$$\begin{array}{rcl} u_t & = & v_x \\ v_t & = & \left(\frac{1}{100}\right) u_x \end{array}$$

with initial and boundary conditions (4.1). Can you write a stable, convergent finite difference scheme for this problem? Explain your answer and give an example of such a scheme if one exists.

[6] Consider the differential equation

$$u_t = u_{xx} + cu$$
 $c < 0$

with smooth initial data $u_0(x) = u(x,0)$ and $u_0(x)$, u(x,t) periodic with period 1 in x.

- (a) Show that the solution decays in time for any initial data.
- (b) Construct a stable convergent finite difference scheme whose solutions are second order accurate in space and time and exhibit a similar decay in time. Justify your statements.
- [7](a)Derive a variational formulation of the convection-diffusion problem,

$$-\Delta u + a \cdot \nabla u + bu = f(x,y) \qquad 0 < x < 1, \qquad 0 < y < 1$$

$$u = c(x,y) \qquad x = 0, 1 \quad 0 \le y \le 1$$

$$\frac{\partial u}{\partial \vec{v}} = d(x,y) \qquad 0 < x < 1 \quad y = 0, 1$$

where a, b, c, d, and f are smooth functions.

(b) Let V_h be an appropriate finite element space (i.e. a space of functions with the requisite approximation properties). Show that the corresponding finite element approximation converges for b > 0. What happens when b = 0?