Qualifying Exam, Winter 2006 NUMERICAL ANALYSIS

DO NOT FORGET TO WRITE YOUR SID NUMBER ON YOUR EXAM. Do all 7 problems.

Problems 1-3 are worth 5 points; problems 4-7 are worth 10 points.

- [1] (5 Pts.) Consider the fixed point problem x = G(x) with a solution α . Assume that G(x) is two times continuously differentiable and that $G'(\alpha) = 0$ but $G''(\alpha) = K \neq 0$.
- (a) Show that if the initial iterate x^0 is sufficiently close to α then the fixed point iteration $x^{n+1} = G(x^n)$ converges to α quadratically.
- (b) Give an estimate of the size of ϵ that insures the iteration $x^{n+1} = G(x^n)$ converges to α if $x^0 \in [\alpha \epsilon, \alpha + \epsilon]$
- [2] (5 Pts.) Let A be a square non-singular matrix and \vec{x} be the solution to $A\vec{x} = b$. Assume one has an approximate solution \vec{z} with an associated residual $\vec{r} = \vec{b}$ $A\vec{z}$. Give a derivation of the following relation between the norm of the error and the norm of the residual

$$\frac{||\,\vec{x} - \vec{z}\,||_2}{||\,\vec{x}\,||_2} \le ||\,\mathbf{A}\,||_2\,||\,\mathbf{A}^{-1}\,||_2 \frac{||\,\vec{r}\,||_2}{||\,\vec{b}\,||_2}$$

[3] (5 Pts.) Given data points (x_i, y_i) for $i = 1 \dots N + 1$ with distinct ordinates, prove that the interpolating polynomial of degree at most N is unique.

Qualifying Exam, Winter 2006 NUMERICAL ANALYSIS

[4] (10 Pts.) Consider the ordinary differential equation

$$y'(t) = f(t, y(t)), y(t_0) = y_0.$$

- (a) Give a derivation of the trapezoidal method in a manner analogous to the derivation of general linear multistep methods.
- (b) Find the leading term of the local truncation error of the trapezoidal method. What is the global error of the method?
- (c) Analyze the linear stability for the trapezoidal method and show that the method is A-stable.
- [5] (10 Pts.) Consider the second order system of equations

$$u_{tt} = u_{xx} + u_{yy} + 2bu_{xy}$$

to be solved for $0 \le x$, $y \le 1$, periodic boundary conditions, and smooth initial data

$$u(x,y,0) = u_0(x,y)$$

$$u_t(x,y,0) = u_1(x,y)$$

- (a) For which real values of b is this a well posed problem? Why?
- (b) Set up a second order accurate, convergent finite difference scheme. Justify your answer.
- [6] (10 Pts.) Consider the convection diffusion equation

$$u_t + au_x = bu_{xx}, \quad b > 0, \quad a \neq 0 \quad \text{for} \quad 0 \leq x \leq 1.$$

- (a) Construct a second order accurate unconditionally stable scheme.
- (b) Do you think it is uniformly stable in the maximum norm as $b\downarrow 0$? Justify your answers.

Qualifying Exam, Winter 2006 NUMERICAL ANALYSIS

[7] (10 Pts.) Consider the problem

$$-\Delta u + u = f(x, y) \qquad (x, y) \in \Omega,$$

$$u = 1 \qquad (x, y) \in \partial \Omega_1,$$

$$\frac{\partial u}{\partial \vec{n}} + u = x \qquad (x, y) \in \partial \Omega_2,$$

where

$$\Omega = \{(x,y): x^2 + y^2 < 1\},
\partial \Omega_1 = \{(x,y): x^2 + y^2 = 1, x \le 0\},
\partial \Omega_2 = \{(x,y): x^2 + y^2 = 1, x > 0\},$$

and $f \in L^2(\Omega)$.

- (a) Determine an appropriate weak variational formulation.
- (b) Verify conditions on the corresponding linear and bilinear forms needed for existence and uniqueness of the solution.
- (c) Assume that the boundary $\partial\Omega$ is approximated by a polygonal curve. Describe a finite element approximation using P_1 elements. Discuss the form and properties of the stiffness matrix and the existence and uniqueness of the solution of the linear system thus obtained. Give a rate of convergence.