Qualifying Exam, 2008 NUMERICAL ANALYSIS

DO NOT FORGET TO WRITE YOUR SID NO. ON YOUR EXAM.

Problems 1-3 are worth 5 points; problems 4-7 are worth 10 points.

All problems will be graded and counted towards the final score.

You have to demonstrate a sufficient amount of work on both groups of problems [1-3] and [4-7].

[1] (5 Pts.) Assume one is using a numerical procedure that results in a value V_h whose accuracy depends on the value of a parameter h. Let \bar{V} be the "exact" value obtained in the limit as $h \to 0$ and assume that there is an asymptotic error expansion of the form

$$V_h - \bar{V} = c_1 h^2 + c_2 h^4 + c_3 h^6 + \cdots$$

- (a) What values of α_k and h_k should be used so that the linear combination $\sum_{k=1}^{k=2} \alpha_k V_{h_k}$ is a 4th order approximation to \bar{V} ? Show your work.
- (b) Will the linear combination derived in (a) still converge to \bar{V} in the limit as $h \to 0$ if the asymptotic error expansion has the form $c_1 h + c_2 h^2 + c_3 h^3 + \cdots$?
- [2] (5 Pts.) Let A be an $n \times n$ singular symmetric matrix with eigenvalues $\lambda_1=0$ and $\lambda_i \neq 0$ for $i=2,3,\ldots n$. Under what conditions on the factor α , the vector \vec{b} , and the initial iterate, \vec{x}^0 , will the iteration

$$\vec{x}^* = \vec{b} - (A - I) \vec{x}^n$$

 $\vec{x}^{n+1} = \alpha \vec{x}^* + (1 - \alpha) \vec{x}^n$

converge to a solution of $A \vec{x} = \vec{b}$? Justify your answer.

[3] (5 Pts.) Let p(x) be the interpolating polynomial of degree n that interpolates the n+1 data points (x_i, y_i) for i = 0 ... n where $x_i \neq x_j$ if $i \neq j$. Derive the formula that incorporates p(x) and yields the polynomial of degree n+1 that interpolates the original data points (x_i, y_i) for i = 0 ... n and the additional distinct data point (x_{n+1}, y_{n+1}) .

Qualifying Exam, Spring 2008

NUMERICAL ANALYSIS

[4] (10 Pts.) Consider the θ -method applied to the ordinary differential equation y' = f(t, y),

$$y_{n+1} = y_n + h \Big[\theta f(t_n, y_n) + (1 - \theta) f(t_{n+1}, y_{n+1}) \Big],$$

 $n = 0, 1, \dots \text{ and } \theta \in [0, 1].$

- (a) Find the order of the method as a function of θ .
- (b) Show that this method is A stable for $\theta = \frac{1}{2}$ (the trapezoidal rule).
- [5] (10 Pts.) Consider the equation

$$u_{tt} = b \, u_{xy} + u_{xx} + u_{yy}$$

where b is a real number to be solved for t > 0, $0 \le x$, $y \le 1$ with smooth initial conditions

$$u(x,y,0) = u_0(x,y)$$

$$u_t(x,y,0) = u_1(x,y)$$

and periodic boundary conditions

$$u(x+1,y,t) \equiv u(x,y,t)$$

$$u(x, y+1, t) = u(x, y, t)$$

- (a) For which values of b is this a well posed problem?
- (b) For those b's, give a stable convergent finite difference scheme.

Justify your answers

[6] (10 Pts.) Consider the problem

$$u_t = -u \, u_x + \epsilon \, u_{xx}$$

for $t > 0, \ 0 \le x \le 1$, and the constant $\epsilon > 0$.

(a) Given smooth initial conditions,

$$u(x,0) = u_0(x),$$

construct a second order accurate solution which converges for some time interval $0 \le t \le T$, T > 0.

(b) In general, why will this scheme have problems being convergent as ϵ goes to zero? Justify your answers.

Qualifying Exam, Spring 2008

NUMERICAL ANALYSIS

[7] (10 Pts.) Let U be a Hilbert space with norm $\|\cdot\|_U$. Suppose that $a(\cdot,\cdot)$ is a symmetric bilinear form on $U \times U$ and L a linear form on U such that

(i) $a(\cdot,\cdot)$ is continuous: there is $\gamma>0$ such that $|a(v,w)|\leq \gamma ||v||_U ||w||_U \forall v,w\in U$

(ii) $a(\cdot,\cdot)$ is coercive: there is $\alpha>0$ such that $|a(v,v)|\geq \alpha ||v||_U^2 \ \forall \ v\in U$

(iii) L is continuous: there is $\Lambda > 0$ such that $|L(v)| \leq \Lambda ||v||_U \ \forall \ v \in U$.

Consider the following abstract problems:

(M) Find
$$u \in U$$
 such that $F(u) = \min_{v \in U} F(v)$,

where $F(v) = \frac{1}{2}a(v, v) - L(v)$.

(V) Find
$$u \in U$$
 such that $a(u, v) = L(v) \ \forall v \in U$.

- (a) Show that problems (M) and (V) are equivalent, i.e., $u \in U$ is a solution of (M) if and only if u is a solution of (V).
- (b) If u is a solution to these two problems, show the stability estimate

$$||u||_U \leq \frac{\Lambda}{\alpha}.$$

- (c) If u_1 and u_2 are two solutions of (V), show that $u_1 = u_2$.
- (d) Let $u \in U$ be solution of (V) and $u_h \in U_h$ (a finite dimensional subspace of U) be such that $a(u_h, v) = L(v) \ \forall v \in U_h$. Show that

$$||u - u_h||_U \le \frac{\gamma}{\alpha} ||u - v||_U \quad \forall v \in U_h.$$