Qualifying Exam, Fall 2009

Numerical Analysis

DO NOT FORGET TO WRITE YOUR SID NO. ON YOUR EXAM.

There are 8 problems. Problems 1-4 are worth 5 points and problems 5-8 are worth 10 points. All problems will be graded and counted towards the final score.

You have to demonstrate a sufficient amount of work on both groups of problems [1-4] and [5-8] to obtain a passing score.

[1] (5 Pts.) Suppose that $f \in C[a, b]$ and $f(a) \cdot f(b) < 0$. The Bisection method generates a sequence $\{p_n\}_{n=1}^{\infty}$ approximating a zero p of f. Describe the Bisection algorithm for generating p_n , and show the approximation error formula

$$|p_n - p| \le \frac{b - a}{2^n}$$
, when $n \ge 1$.

[2] (5 Pts.) Let $f \in C^4[x_0 - h, x_0 + h]$, with h > 0. Derive the second-order central finite difference approximation of $f''(x_0)$ and give the error formula.

[3] (5 Pts.) Consider the following matrix

$$A = \begin{pmatrix} a & -b \\ -a & a \end{pmatrix}$$

with a > b > 0. Prove that Gauss-Seidel converges to the solution of

$$A\vec{\mathrm{u}} = \vec{\mathrm{f}}$$

for any non-trivial initial guess and any right hand side \vec{f} .

[4] (5 Pts.) A program was written that implements the composite trapezoidal method to approximate integrals of the form $\int_0^1 f(x) dx$. This program was tested on monomials of increasing degrees using double precision arithmetic and the number of panels N = 1000. The results are as follows:

Qualifying Exam, Fall 2009

Numerical Analysis

f(x) Computed Approximation

1	1.000500000000
\boldsymbol{x}	0.5005000000000
x^2	0.333833500000
x^3	0.250500250000
x^4	0.200500333333

Is this program working correctly? Explain your answer.

[5] (10 Pts.) (a) When the forward Euler method is applied to the model problem

$$\frac{dy}{dt} = \lambda y, \qquad y(0) = y_0$$

with $\text{Re}(\lambda) > 0$, then for any timestep dt > 0, the quantity $dt\lambda$ is **not** contained in forward Euler's region of absolute stability. Should forward Euler not be used for such cases? Explain.

(b) Give a derivation of the leading term of the local truncation error for the backward Euler method

$$y^{k+1} = y^k - dt \, f(y^{k+1})$$

used to create approximate solutions to the initial value problem $\frac{dy}{dt} = f(y)$ with $y(t_0) = y_0$ for $t \in [t_0, T]$.

- (c) Assuming f(y) is smooth and has a global Lipschitz constant K, give a derivation of an error bound for the backward Euler method. Specifically, derive a bound for $|e_N| = |y(T) y^N|$ where $dt = (T t_0)/N$ and y^N is the approximate solution at T obtained using N steps of backward Euler.
- [6] (10 Pts.) Consider the initial-boundary value problem:

$$u_t = a(x, t)u_x$$

to be solved for t > 0, $0 \le x \le 1$, with $u(x,0) = \phi(x)$, and both $\phi(x)$ and a(x,t) smooth.

- (a) What boundary conditions, if any, should we impose at x = 0 and at x = 1? Why?
- (b) Construct a convergent finite difference approximation Justify your answers.

Qualifying Exam, Fall 2009

NUMERICAL ANALYSIS

[7] (10 Pts.) Consider the equation:

$$u_t = uu_{xx}$$

to be solved for t > 0, $0 \le x \le 1$, u(0,t) = u(1,t) and $u_x(0,t) = u_x(1,t)$ for t > 0, $u(x,0) = \phi(x)$, $\phi(x)$ smooth.

- (a) What restrictions do you need on $\phi(x)$ in order to be able to obtain a convergent finite difference scheme? Why?
- (b) Given such a ϕ , construct such a scheme. Justify your answers.
- [8] (10 Pts.) Consider the boundary-value problem

$$-\Delta u = f(x, y), \qquad (x, y) \in \Omega$$
$$u = 1 \qquad (x, y) \in \partial \Omega_1$$
$$\frac{\partial u}{\partial n} + u = x \qquad (x, y) \in \partial \Omega_2,$$

where

$$\begin{split} \Omega &= \{(x,y)|\ x^2+y^2<1\},\\ \partial \Omega_1 &= \{(x,y)|\ x^2+y^2=1,\ x\leq 0\},\\ \partial \Omega_2 &= \{(x,y)|\ x^2+y^2=1,\ x>0\}\\ \text{and } f\in L^2(\Omega). \end{split}$$

- (a) Write a weak variational formulation by choosing the appropriate space of test functions.
- (b) Verify the assumptions of the Lax-Milgram Theorem.
- (c) Describe and analyze in details a piecewise-linear Galerkin finite element approximation for the problem.