DO NOT FORGET TO WRITE YOUR SID NO. ON YOUR EXAM.

There are 8 problems. Problems 1-4 are worth 5 points and problems 5-8 are worth 10 points. All problems will be graded and counted towards the final score.

You have to demonstrate a sufficient amount of work on both groups of problems [1-4] and [5-8] to obtain a passing score.

[1] (5 Pts.) Let S(x) be a cubic spline with knots $t_0, t_1, t_2, \ldots t_n$. If it is determined that S(x) is linear over $[t_1, t_2]$ and $[t_3, t_4]$ what can be said about S(x) over $[t_2, t_3]$?

[2] (5 Pts.) Consider the iteration

$$x_{n+1} = x_n - \left(\frac{x_n - x_0}{f(x_n) - f(x_0)}\right) f(x_n)$$

for finding the roots of a two times continuously differentiable function f(x). Assuming the method converges to a simple root x^* , what is the rate of convergence? Justify your answer.

[3] (5 Pts.) Let $P_{0,1,\dots,n} := P_{x_0,x_1,\dots,x_n}$ be the interpolating Lagrange polynomial of degree at most n through the points x_0, x_1, \dots, x_n and values $f(x_0), \dots, f(x_n)$, such that $P_{0,1,\dots,n}(x_i) = f(x_i)$.

(a) Let $i, j \in \{0, 1, ..., n\}$ be two distinct integers. Express $P_{0,1,...,n}$ in terms of $P_{0,...,i-1,i+1,...,n}$ and $P_{0,...,j-1,j+1,...,n}$.

(b) Suppose $x_j = j$ for j = 0, 1, 2, 3 and it is known that $P_{0,1}(x) = x + 1$, $P_{1,2}(x) = 3x - 1$, and $P_{1,2,3}(1.5) = 4$. Find $P_{0,1,2,3}(1.5)$.

[4] (5 Pts.) The Trapezoidal rule applied to $\int_0^2 f(x)dx$ gives the value of 4, and Simpson's rule gives the value 2. What is f(1)?

[5] (10 Pts.) Consider the numerical method

$$\vec{y}^{n+1} = \vec{y}^n + kA\vec{y}^{n+1}$$

used to create approximate solutions of the linear system of equations

$$rac{dec{y}}{dt}=\mathrm{A}ec{y}, \qquad ec{y}(t_0)=ec{y}_0$$

for $t \in [t_0, T]$.

- (a) Derive a bound for the local truncation error in the $||*||_2$ norm of the form $C(T)k^p$ where the constant C(T) is explicitly expressed in terms of $\sup_{t\in[t_0,T]}||\vec{y}(t)||_2$ and powers of $||A||_2$ and holds for $t\in[t_0,T]$.
- (b) Assume A is symmetric and negative definite. If $\vec{e}^n = \vec{y}^n \vec{y}(t^n)$ is the error at the *n*th step and $C(T)k^p$ the bound derived in (a), show that

$$||\vec{e}^{\,n}||_2 \le [\mathrm{T} - t_0] \, \mathrm{C}(\mathrm{T}) k^{\,p-1}$$

for all $n, t_0 \le nk \le T$ assuming $\vec{e}^{0} = 0$.

Note: The defining equation for the local truncation error assumed for this problem is not based on the numerical method by k.

[6] (10 Pts.) Consider the equation

$$u_t = u_{xx} - c(x)u$$

with c(x) smooth and positive, to be solved for $0 \le x \le 1$ and t > 0.

$$u(x,0) = \varphi(x)$$

$$u(0,t) = u(1,t) = 0$$

(a) Assuming $\varphi(x)$ is smooth, construct a finite difference scheme which converges in the maximum norm to the true solution. Justify your answers.

[7] (10 Pts.) Consider the initial value problem

$$u_{tt} = au_{xx} + 2bu_{xy} + cu_{yy}$$

to be solved for

$$0 \le x, y \le 1$$
$$t > 0$$

with

$$u(x, y, 0) = \varphi(x, y)$$

$$u_t(x, y, 0) = \psi(x, y)$$

 φ, ψ smooth and periodic with period 1 in x and y. Here a, b, c are real constants and u is periodic with period 1 in x and y.

- (a) For which values of a, b, c is this well-posed?
- (b) Set up a convergent finite difference scheme in the well-posed case. Justify your answers.
- [8] (10 Pts.) Consider the problem,

$$-\operatorname{div}\left(a(x)\nabla u\right) + b(x)u = f(x), \quad x = (x_1, x_2) \in \Omega,$$

$$u = 0, \qquad x \in \partial\Omega_1,$$

$$\frac{\partial u}{\partial x_1} + \frac{\partial u}{\partial x_2} + u = 2, \qquad x \in \partial\Omega_2,$$

where
$$\Omega = \{x | x_1 > 0, x_2 > 0, x_1 + x_2 < 1\},$$

$$\partial \Omega_1 = \{x | x_1 = 0, 0 \le x_2 \le 1\} \cup \{x | x_2 = 0, 0 \le x_1 \le 1\},$$

$$\partial \Omega_2 = \{x | x_1 > 0, x_2 > 0, x_1 + x_2 = 1\},$$

$$0 < a \le a(x) \le A, 0 < b \le b(x) \le B, \text{ with } a \text{ and } b \text{ smooth functions and } f \in L^2(\Omega).$$

- (a) Find the weak variational formulation and show that the problem is well-posed, by verifying the assumptions of the Lax-Milgram Lemma and by analyzing the appropriate bilinear and linear forms.
- (b) Develop and describe the piecewise linear Galerkin finite element approximation of the problem and a set of basis functions such that the corresponding linear system is sparse. Show that this linear system has a unique solution.