DO NOT FORGET TO WRITE YOUR SID NO. ON YOUR EXAM.

There are 8 problems. Problems 1-4 are worth 5 points and problems 5-8 are worth 10 points. All problems will be graded and counted towards the final score.

You have to demonstrate a sufficient amount of work on both groups of problems [1-4] and [5-8] to obtain a passing score.

- [1] (5 Pts.) Assume that $f(x) : \mathbb{R} \to \mathbb{R}$ is a smooth function. Let $\epsilon > 0$ and consider the three data values $(0, f(0)), (\epsilon, f(\epsilon)),$ and (1, f(1)). Let p(x) be the polynomial that arises as the limit of the polynomial interpolant of the data as $\epsilon \to 0$.
- (a) What is the degree of p(x)?
- (b) What data (if any) does p(x) interpolate?
- (c) What data (if any) does p'(x) interpolate?
- [2] (5 Pts.) Assume that $f(x) : \mathbb{R} \to \mathbb{R}$ is a smooth function with a simple root at $x = x^*$. Let x^k and x^{k+1} be two successive approximate roots close to x^* obtained using Newton's method. Explain why $|x^{k+1} x^k|$ is a good approximation to the error $|x^k x^*|$.
- [3] (5 Pts.) Find a bound for the number of iterations of the Bisection method needed to achieve an approximation with accuray 10^{-3} to the solution of $x^3 + x 4 = 0$ lying in the interval [1, 4]. Justify your answer.
- [4] (5 Pts.) For a single panel, the Midpoint rule

$$\int_{x-1}^{x_1} f(x)dx = 2hf(x_0) + \frac{h^3}{3}f''(\xi)$$

(where $x_1 - x_0 = x_0 - x_{-1} = h$, $x_{-1} < \xi < x_1$) is third order accurate.

What is the order of accuracy of the composite Midpoint rule? Justify your answer.

[5] (10 Pts.) Consider the numerical method

$$y^* = y_{n-1} + \frac{2h}{3}f(y_{n-1})$$

$$y_n = y_{n-1} + \frac{h}{4} f(y_{n-1}) + \frac{3h}{4} f(y^*)$$

to obtain approximate solutions to

$$\frac{dy}{dt} = f(y) \qquad y(t_0) = y_0$$

- (a) Assuming $f(y): \mathbb{R} \to \mathbb{R}$ is smooth, give the leading term of the expansion of the local truncation error for this method.
- (b) Derive the relation between $|e_n| = |y(t_n) y_n|$ and $|e_{n-1}| = |y(t_{n-1}) y_{n-1}|$ and the local truncation error. You may assume that f(y) has global Lipschitz constant L.
- [c] Give the derivation of an error bound that uses your results from [a] and [b] to obtain an error bound for this method over a time interval [0, T].
- [6] (10 Pts.) Consider the initial value problem

$$u_t = u_x + v_x$$
$$v_t = v_x$$

to be solved for $0 \le x \le 1$, $t \ge 0$ with initial and boundary conditions

$$u(x,0) = \varphi(x),$$
 $u(1,t) = u(0,t)$
 $v(x,0) = \psi(x),$ $v(1,t) = v(0,t)$

where $\varphi(x)$ and $\psi(x)$ are smooth and periodic functions.

[6a](i) Can you write a stable, convergent finite difference scheme for this problem?

[6a](ii) Give an example if one exists.

Explain your answers.

[6b] Consider the related system

$$u_t = u_x + v_x$$

$$v_t = \frac{1}{1000}u_x + v_x$$

with the same initial and boundary conditions.

[6b](i) Can you write a stable, convergent finite difference scheme for this problem?

[6b](ii) Give an example if one exists.

Explain your answers.

Qualifying Exam, Fall 2012 NUMERICAL ANALYSIS

[7](10 Pts.) Consider the differential equation

$$u_t = u_{xx} + u_{yy} + cu, \quad c < 0$$

with smooth initial data

$$u(x, y, 0) = u_0(x, y)$$

with $u_0(x, y)$ and u(x, y, t) periodic, period 1 in x and in y.

- (a) Show the solution decays in time for any initial data.
- (b) Construct a stable, convergent finite difference scheme which is second order accurate in space and time and whose solutions have a similar decay in time.
- (c) Justify your answer.

[8] (10 Pts.) Consider the boundary-value problem

$$-\Delta u = f(x, y), \qquad (x, y) \in \Omega$$
$$u = 1 \qquad (x, y) \in \partial \Omega_1$$
$$\frac{\partial u}{\partial n} + u = x \qquad (x, y) \in \partial \Omega_2,$$

where

$$\begin{split} &\Omega = \{(x,y)|\ x^2 + y^2 < 1\},\\ &\partial \Omega_1 = \{(x,y)|\ x^2 + y^2 = 1,\ x \leq 0\},\\ &\partial \Omega_2 = \{(x,y)|\ x^2 + y^2 = 1,\ x > 0\} \end{split}$$

and $f \in L^2(\Omega)$.

- (a) Write a weak variational formulation by choosing the appropriate space of test functions.
- (b) Verify the assumptions of the Lax-Milgram Theorem.
- (c) Describe and analyze in detail a piecewise-linear Galerkin finite element approximation for the problem.