
Qualifying Exam, Spring 2013

Numerical Analysis

DO NOT FORGET TO WRITE YOUR SID NO. ON YOUR EXAM.

There are 8 problems. Problems 1-4 are worth 5 points and problems 5-8 are worth
10 points. All problems will be graded and counted towards the final score.

You have to demonstrate a sufficient amount of work on both groups of problems
[1-4] and [5-8] to obtain a passing score.

[1] (5 Pts.) Consider the linear system Ax = b with x, b ∈ Rn and A = M − N ∈ Rn×n is
nonsingular.

(a) If M is nonsingular and if (M−1N)k → 0 as k →∞, show that the iterates xk, defined by

Mxk+1 = Nxk + b,

converge to x = A−1b for any starting vector x0.

(b) Find a splitting A = M − N for the matrix A =

(
10 −1
−1 10

)
, so that the iteration in (a) is

convergent. Justify your answer.

[2] (5 Pts.) Let g ∈ C([a, b]), with a ≤ g(x) ≤ b for all x ∈ [a, b]. Prove the following:

(a) g has at least one fixed point p in the interval [a, b].

(b) If there is a value 0 < γ < 1 such that

|g(x)− g(y)| ≤ γ|x− y|

for all x, y ∈ [a, b], then the fixed point p is unique, and the iteration

xn+1 = g(xn)

converges to p for any initial guess x0 ∈ [a, b].

[3] (5 Pts.) Let u : R2 → R be a smooth function.

(a) For (x, y) ∈ [0, δx] × [0, δy] derive the bilinear interpolation formula for u(x, y) that uses the
function values u(0, 0), u(δx, 0) and u(0, δy), u(δx, δy) (e.g. the formula that results when you
linearly interpolate in one direction followed by linear interpolation in the other direction).

(b) Derive the leading term of error expansion for the error in the interpolated value when using
the formula in (a).
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[4] (5 Pts.) Let ∆h be the following three point difference operator that approximates
d2u

dx2
using

a mesh spacing h e.g.

∆hu =
u(x+ h)− 2u(x) + u(x− h)

h2

(a) Derive the combination of ∆h and ∆2h that yields a 4th order approximation to
d2u

dx2
.

(b) Give a derivation of the leading term of the local truncation error for the difference approxi-
mation you obtained in (a).

[5] (10 Pts.) Consider the following general 2-stage explicit Runge-Kutta method for advancing

the solution of
dy

dt
= F(y) with timestep k,

y∗ = yn + α k F(yn)

yn+1 = yn + β k F(yn) + γ k F(y∗)

(a) Derive conditions on the coefficients α, β, and γ that insure that the method converges to at
least first order.

(b) Assuming that the coefficients of the method are selected so that it is first order, derive the
expression that determines the interval of absolute stability for the method.

(c) Show that there is at least one set of values α > 0, β > 0, and γ > 0, so that the resulting
method is first order accurate and has an interval of absolute stability that is larger than [−2, 0]
(the latter being the interval of absolute stability for all second order methods of the given form).

[6] (10 Pts.) Consider the equation

ut = b1uxx + b2uyy

b1, b2 positive constants, to be solved for 0 ≤ x, y ≤ 1 with periodic boundary conditions
u(x+ 1, y, t) ≡ u(x, y, t) ≡ u(x, y + 1, t) and u(x, y, 0) = Φ(x, y) given.

(a) Write an unconditionally stable scheme (in time) to solve this equation which involves only one
dimensional inversions and which is second order accurate in space.

(b) Justify your answer.
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[7](10 Pts.) Consider the equation

utt = auxx + 2buxy + cuyy

to be solved for t > 0 0 ≤ x, y ≤ 1 and periodic boundary conditions u(x + 1, y, t) ≡ u(x, y, t) ≡
u(x, y + 1, t) with initial data u(x, y, 0), ut(x, y, 0) given.

(a) For what value of the constants a, b, c is the problem well posed?

(b) Write a convergent difference scheme for this problem for choices of the coefficients that result
in a well posed problem.

(c) Justify your answers.

[8] (10 Pts.) Consider the problem in two dimensions,

−div
(
α(x)∇u

)
+ β(x)u = f(x), x = (x1, x2) ∈ Ω ⊂ R2,

u = 0, x ∈ ∂Ω1,
∂u

∂x1
+

∂u

∂x2
+ u = 5, x ∈ ∂Ω2,

where Ω = {x ∈ R2| x1 > 0, x2 > 0, x1 + x2 < 1},
∂Ω1 = {x ∈ R2| x1 = 0, 0 ≤ x2 ≤ 1} ∪ {x ∈ R2| x2 = 0, 0 ≤ x1 ≤ 1},
∂Ω2 = {x ∈ R2| x1 > 0, x2 > 0, x1 + x2 = 1},
0 < a ≤ α(x) ≤ A, 0 < b ≤ β(x) ≤ B,

with α and β smooth functions and f ∈ L2(Ω).

(a) Find the weak variational formulation and show that the problem is well-posed by verifying
the assumptions of the Lax-Milgram Lemma and by analyzing the appropriate bilinear and linear
forms.

(b) Develop and describe a piecewise linear Galerkin finite element approximation of the problem
that uses a set of basis functions for which the corresponding linear system will be sparse. Show
that this linear system has a unique solution.


