WRITE YOUR STUDENT ID NO. ON EACH PAGE OF YOUR EXAM. DO NOT WRITE YOUR NAME.

There are 8 problems. Problems 1-4 are worth 5 points and problems 5-8 are worth 10 points. All problems will be graded and counted towards the final score.

You have to demonstrate a sufficient amount of work on both groups of problems [1-4] and [5-8] to obtain a passing score.

[1] (5 Pts.) Consider the following finite difference approximation to $\frac{\mathrm{d}^2 u}{\mathrm{d}x^2}$ on a non-uniform mesh with mesh spacing $h_i = x_i - x_{i-1}$

$$\frac{\mathrm{d}^2 u}{\mathrm{d}x^2}|_{x_i} \approx \frac{\frac{(u_{i+1} - u_i)}{h_{i+1}} - \frac{(u_i - u_{i-1})}{h_i}}{\frac{(h_i + h_{i+1})}{2}}$$

- (a) Derive the leading term of the error expansion associated with this approximation.
- (b) If one defines ϵ_{i+1} so that $h_{i+1} = h_i + \epsilon_{i+1}$, what is the largest size of $|\epsilon_{i+1}|$ that can be used and still result in an approximation that has an order of accuracy the same as that of the approximation with equal sized mesh spacing, $h_{i+1} = h_i$?
- [2] (5 Pts.) Let I(h) be the values of a numerical procedure depending on a discretization parameter h that approximates a value I as $h \to 0$. Let $P_{\tilde{h}}(h)$ be the linear interpolant of I(h) based upon two values $I(\tilde{h})$ and $I(2\tilde{h})$.
- (a) Derive the leading term of an error bound for $|P_{\tilde{h}}(h) I(h)|$ for $h \in [0, 2\tilde{h}]$.
- (b) If I(h) has an ayamptotic error expansion of the form $I(h) I = c_1 h + c_2 h^2 + c_3 h^3 + \cdots$ derive the leading term of the error bound for $|P_{\tilde{h}}(0) I|$.
- [3] (5 Pts.) Suppose that $f \in C[a, b]$ and $f(a) \cdot f(b) < 0$. The Bisection method generates a sequence $\{p_n\}_{n=1}^{\infty}$ approximating a zero p of f. Describe the Bisection algorithm for generating p_n , and show the approximation error formula

$$|p_n - p| \le \frac{b-a}{2^n}$$
, when $n \ge 1$.

[4] (5 Pts.) Consider the implicit Euler's method (or the backwards Euler's method)

$$y_{i+1} = y_i + hf(x_{i+1}, y_{i+1})$$

for the ODE y' = f(x, y), with y(0) the initial condition. Derive the region of absolute stability for the method. Given an ODE for which $\frac{\partial f}{\partial y} > 0$, does backwards Euler always give the qualitatively correct solution? Explain.

[5] (10 Pts.) Let f(y) and g(y) be smooth real valued functions of y and consider the differential equation

$$\frac{dy}{dt} = f(y) + g(y), \qquad y(0) = y_0$$

(a) Derive the leading term of the local truncation error for the method,

$$y^* = y^n + k f(y^n)$$

 $y^{n+1} = y^* + k g(y^{n+1})$

- (b) Assume one can evaluate the derivatives $\frac{df}{dy}$ and $\frac{dg}{dy}$. Determine additional terms, which may incorporate these derivatives, that can be added to the method in (a) and result in a higher order method. Justify your results.
- [6] (10 Pts.) Consider the initial value problem

$$u_t = u_x + v_x$$
$$v_t = v_x$$

to be solved for $0 \le x \le 1$, $t \ge 0$, with initial and boundary conditions

$$u(x,0) = \varphi(x),$$
 $u(1,t) = u(0,t)$
 $v(x,0) = \psi(x),$ $v(1,t) = v(0,t)$

- (i) Can you find a stable convergent finite difference scheme for this problem?
- (ii) Explain your answer and give an example of such a scheme if one exists.
- (b) Consider the related system

$$u_t = u_x + v_x$$

$$v_t = \frac{1}{1000}u_x + v_x$$

with the same initial and boundary conditions.

- (i) Can you write a stable consistent finite difference scheme for this problem?
- (ii) Explain your answer and give an example of such a scheme if one exists.

[7] (10 Pts.) Consider the equation

$$u_t = u_{xx} + u_{yy} + u_{zz} - u$$

to be solved for t > 0 on the cube $0 \le x, y, z \le 1$, u = 0 on the boundary of the cube and $u(x, y, z, 0) = u_0(x, y, z)$, is smooth.

- (a) Devise an unconditionally stable, convergent scheme that involves only inverting $n \times n$ matrices if there are n grid points per direction in the discretization.
- (b) What is the order of accuracy of your method?
- (c) Justify your answers.
- [8] (10 Pts.) Let V be a Hilbert space with norm $\|\cdot\|_V$. Suppose that $a(\cdot,\cdot)$ is a symmetric bilinear form on $V \times V$ and L a linear form on V such that
- (i) $a(\cdot,\cdot)$ is continuous: there is $\gamma>0$ such that $|a(v,w)|\leq \gamma ||v||_V||w||_V \ \forall \ v,\ w\in V$
- (ii) $a(\cdot,\cdot)$ is coercive: there is $\alpha>0$ such that $|a(v,v)|\geq \alpha ||v||_V^2 \ \forall \ v\in V$
- (iii) L is continuous: there is $\Lambda > 0$ such that $|L(v)| \leq \Lambda ||v||_V \ \forall \ v \in V$.

Consider the following abstract problems:

- (M) Find $u \in V$ such that $F(u) = \min_{v \in V} F(v)$, where $F(v) = \frac{1}{2}a(v,v) L(v)$
- (V) Find $u \in V$ such that $a(u, v) = L(v) \ \forall v \in V$.
- (a) Show that problems (M) and (V) are equivalent, i.e., $u \in V$ is a solution of (M) if and only if u is a solution of (V).
- (b) If u is a solution to these two problems, show the stability estimate

$$||u||_V \le \frac{\Lambda}{\alpha}.$$

- (c) If u_1 and u_2 are two solutions of (V), show that $u_1 = u_2$.
- (d) Let $u \in V$ be solution of (V) and $u_h \in V_h$ (a finite dimensional subspace of V) be such that $a(u_h, v) = L(v) \ \forall v \in V_h$. Show that

$$||u - u_h||_V \le \frac{\gamma}{\alpha} ||u - v||_V \quad \forall v \in V_h.$$