Qualifying Exam, Spring 2017 NUMERICAL ANALYSIS

DO NOT FORGET TO WRITE YOUR SID NO. ON YOUR EXAM.

There are 8 problems. Problems 1-4 are worth 5 points and problems 5-8 are worth 10 points. All problems will be graded and counted towards the final score.

You have to demonstrate a sufficient amount of work on both groups of problems [1-4] and [5-8] to obtain a passing score.

[1] (5 Pts.) (a) Let $f : \mathbb{R} \to \mathbb{R}$ be a smooth function with an isolated minimum at a point b and both f(b) and f''(b) are O(1). Let x_n be an approximation to the point b and assume one has the bound $|f(x_n) - f(b)| < \epsilon$. Derive the leading term for an estimate of $|x_n - b|$ in terms of ϵ .

(b) Suppose that due to numerical errors in evaluating the function f you make the assumption that $|f(x) - f(b)| > \beta$ where $\beta = 1.0 \times 10^{-14}$ for all numerically representable values x. How close can you expect to be able to find an approximation x_n to the value b, the point where f obtains its minimum? Explain.

[2] (5 Pts.) Let $f : \mathbb{R} \to \mathbb{R}$ be a smooth function and \bar{x} a fixed point of f, $f(\bar{x}) = \bar{x}$. Consider determining the fixed point \bar{x} by evolving the differential equation

(DE)
$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x) - x$$

to steady state.

(a) Assume that forward Euler with timestep size k is used to approximate the soluton to the differential equation (DE). Derive a relation between $e_{n+1} = |x^{n+1} - \bar{x}|$ and $e_n = |x^n - \bar{x}|$ where x^n is the approximation to x(n k).

(b) Assume $\frac{df}{dx}(x) < \kappa < 0$ for all x. Determine the restriction on the timestep that must be imposed to insure that x^n will converge to the fixed point \bar{x} .

[3] (5 Pts.) Consider the boundary-value problem

$$y'' = q(x)y + r(x)$$
, for $a \le x \le b$, with $y(a) = \alpha$ and $y(b) = \beta$.

(a) Using standard centered-difference approximations for $y''(x_i)$, derive the system of equations whose solution can be used to approximate the solution to this problem.

(b) What is the expected order of accuracy of your approximation? Explain.

Qualifying Exam, Spring 2017 NUMERICAL ANALYSIS

[4] (5 Pts.) For the midpoint rule, I_m , and the Trapezoidal rule, I_T , asymptotic expansions for the error are given by

$$\int_{0}^{h} f(s)ds - I_{m} = \frac{1}{24}f''(0)h^{3} + \frac{1}{48}f'''(0)h^{4} + \frac{11}{1920}f^{(4)}(0)h^{5} + \frac{13}{11520}f^{(5)}(0)h^{6} \dots$$
$$\int_{0}^{h} f(s)ds - I_{T} = -\frac{1}{12}f''(0)h^{3} - \frac{1}{24}f'''(0)h^{4} - \frac{1}{80}f^{(4)}(0)h^{5} - \frac{1}{360}f^{(5)}(0)h^{6}\dots$$

(a) Derive the coefficients of the approximation

$$\int_0^h f(s)ds = a_0 f(0) + a_1 f(\frac{h}{2}) + a_2 f(h)$$

that results in an approximation of greater accuracy than either the midpoint rule or the Trapezoidal rule.

(b) What is the order of your resulting approximation?

[5] (10 Pts.) Consider the two-step method for the initial value problem y' = f(t, y), $y(0) = y_0$,

$$y_{n+1} = \frac{1}{2}(y_n + y_{n-1}) + \frac{h}{4}[4y'_{n+1} - y'_n + 3y'_{n-1}]$$

with $y'_n \equiv f(t_n, y_n)$.

(a) Derive the leading order of the truncation error for this method.

(b) Is this a convergent method, and if so, what is the global order of convergence? Explain, and give a derivation of the conditions that support your conclusion.

(c) To use this method you need two starting values y_0 and y_1 . Give a procedure for determining the required starting value y_1 so that the global order of convergence is the same as that determined in (b). Explain.

(d) Derive the conditions that determine the region of absolute stability for this method.

Qualifying Exam, Spring 2017 NUMERICAL ANALYSIS

[6] (10 Pts.) Consider the initial value problem

$$\begin{array}{rcl} u_t &=& 0\\ v_t &=& u_x \end{array}$$

to be solved for $0 \le x \le 1$, $t \ge 0$, with initial and boundary conditions

$$u(x,0) = \varphi(x),$$
 $u(1,t) = u(0,t)$
 $v(x,0) = \psi(x),$ $v(1,t) = v(0,t)$

(a) (i) Can you write a stable, convergent finite difference scheme for this problem?

(ii) Explain your answer and give an example of such a scheme if one exists.

(b) Consider the related system

$$u_t = \frac{1}{1000} v_x \tag{1}$$
$$v_t = u_x$$

with the same initial and boundary conditions.

- (i) Can you write a stable consistent finite difference scheme for this problem?
- (ii) Explain your answer and give an example of such a scheme if one exists.

[7] (10 Pts.) Consider the differential equation

$$u_t = a \, u_{xx} + 2 \, b \, u_{xy} + c \, u_{yy}$$

with a, b, c constants, to be solved for $t > 0, 0 \le x, y \le 1$ with $u(x, y, 0) = \phi(x, y)$ smooth and boundary conditions u(0, s, t) = u(1, s, t) = u(s, 0, t) = u(s, 1, t) = 0 for $s \in [0, 1]$.

- (a) For what values of a, b and c would you expect good behavior of the solution?
- (b) Write a convergent difference approximation to this problem.
- (c) Justify your answers

[8] (10 Pts.) Consider the elliptic boundary value problem

$$-\Delta u + u = f(x, y), \quad (x, y) \in \Omega$$
$$u = 1 \quad (x, y) \in \partial \Omega_1$$
$$\frac{\partial u}{\partial \vec{n}} + u = x \quad (x, y) \in \partial \Omega_2,$$

where

$$\begin{split} \Omega &= \{ (x,y) | \ x^2 + y^2 < 1 \}, \\ \partial \Omega_1 &= \{ (x,y) | \ x^2 + y^2 = 1, \ x \leq 0 \}, \\ \partial \Omega_2 &= \{ (x,y) | \ x^2 + y^2 = 1, \ x > 0 \}, \\ \text{and } \vec{n} \text{ denotes the exterior unit normal to } \partial \Omega. \end{split}$$

(a) Derive a weak variational formulation of the problem.

(b) Assuming the appropriate condition on the function f, analyze the assumptions of the Lax-Milgram theorem that ensure existence and uniqueness of a weak solution.

(c) Setup a piecewise-linear Galerkin finite element approximation for this problem. Show that the obtained system has a unique solution. Give a convergence estimate and quote the appropriate theorems for convergence.