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ADE Exam, Fall 2021
Department of Mathematics, UCLA

1. [10 points] Find all equilibrium points of the following system of differential equations:

dx

dt
= sin(x+ y) ,

dy

dt
= ex − 1 .

Determine whether each equilibrium point is stable or unstable. Also state precisely what the difference is
between stability and asymptotic stability.

2. [10 points] Use Frobenius series near t = 0 to find two independent solutions to the differential equation

t2
d2y

dt2
+ t

dy

dt
+

(
t2 − 1

4

)
y = 0 , 0 < t <∞ .

Subsequently give explicit expressions for the coefficients of your series solutions.

3. [10 points] The concentration c(r, t) of diffusing molecules within a droplet obeys the following PDE:

∂c

∂t
=

1

r2

∂

∂r

(
r2 ∂c

∂r

)
, r < 2 , t > 0 (1)

along with side conditions

c(r, 0) =

{
0 if r < 1
1 if r > 1

and − ∂c

∂r

∣∣∣∣
r=2

= 0 .

Here r is the usual spherical polar coordinate, representing distance to the center of the droplet.

By seeking solutions of the form c(r, t) = ρ(r)
r T (t), or otherwise, prove the following facts:

(a) In the limit t→∞, it is the case that c(r, t)→ c∞. You should find the constant c∞.

(b) Also, in the limit t → ∞, it is the case that |c(r, t) − c∞| < Ce−αt for some positive constants C and α.
You should identify the largest possible value for the constant α.

Note: You do not need to give the value of α explicitly; it is sufficient to define it implicitly as a root of an
equation. There is no need to find a value for C.

4. [10 points] Show, for a constant β ≥ 0 is a constant, that the PDE

utt + βut − uxx + u = 0 , x ∈ R (2)

has at most one compactly supported solution, if given C2 initial data u(x, 0) = φ(x) and u,t(x, 0) = ψ(x).
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5. [10 points] A function u(x, t) satisfies the nonlinear PDE

∆u− u3 = 0 (3)

on a bounded, open domain Ω ⊂ Rd, with boundary conditions u = g(x) on ∂Ω . Assume that u ∈ C2(Ω)∪C(Ω̄),
and that g(x) > 0 at some x ∈ ∂Ω.

(a) Show that u(x) < maxX∈∂Ω{g(X)} for all x ∈ Ω.

(b) Consider the special case d = 1 and Ω = [−1, 1]. By choosing appropriate boundary conditions at g(±1),
show that u(x) can attain values less than min{g(±1)}.

6. [10 points] Consider Burgers equation ut+uux = 0 in {x, t > 0} with initial condition u(x, 0) = 0 and boundary
condition u(0, t) = 1 for 0 < t < 1 and u(0, t) = 2 for t > 1.

(a) Plot the characterstics coming from the t-axis.

(b) What is the entropy solution for 0 < t < 1?

[HINT: it should be related to the Riemann problem]

(c) For t > 2 there is a new structure emerging from the t axis. What is it? When will it merge with the
structure from part (b)?

(d) Write the full solution to the problem for t > 0, satisfying the entropy condition.

7. [10 points] The damped Kuramoto–Sivashinsky equation is

ut + uux = −γuxx − uxxxx − βu ,

where γ, β > 0 are constants.

Show that two smooth solutions on a periodic interval [0, L] that have the same initial data remain equal to
each other at later times. Note that since γ > 0 the first term on the right hand side is destabilizing. You can
break the problem down in two steps:

(a) Given any ε > 0 prove there exists a constant C so that any smooth function u on the periodic interval
satisfies ∣∣∣∣∣

∫ L

0

uuxxdx

∣∣∣∣∣ < ε

∫ L

0

u2
xxdx+ C

∫ L

0

u2dx.

(b) Using the above and Grönwall’s Lemma, provide the uniqueness result.

8. [10 points] The Ginzburg–Landau energy is G(u) = 1
2

∫
|∇u|2 +

∫
W (u) , where W (u) = (1 − u2)2 is a double-

well potential with local minima at u = ±1. The L2 gradient descent of the energy G is the Allen–Cahn (AC)
equation

ut = −δG
δu

= ∆u−W ′(u) .

Here the first variation uses the L2 inner product.

(a) Consider the AC equation on the line in 1D. Write the associated steady-state equation as a coupled system
of first-order equations for u(x) and v(x) = u′(x). Show that this is a Hamiltonian system by finding the
formula for the Hamiltonian, up to a constant.
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(b) Sketch the phase portrait of the steady-state solutions in the u-v plane; label all equilibria and separatrices.

Note: The main point here is to get the topology correct rather than proving theorems about the equilibria.

(c) Show that there are periodic solutions for all periods T for T ≥ T0 for some T0 and determine what is T0.

(d) Show that there are solutions with u → ±1 as x → −∞ and u → ∓1 as x → +∞ by pointing out what
those correspond to on your phase potrait and why.

(e) Consider the diffuse-interface rescaling of the AC equation:

ut = ε∆u− 1

ε
W ′(u) .

Show that there exists a steady-state solution of this equation that asymptotes to 1 as x→ −∞ and to −1
as x→ +∞ and such that the transition between −1 and 1 occurs over a lengthscale of O(ε).
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