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Qualifying Exam: Geometry/Topology Fall 2021

Instructions: Do all 10 problems. Each problem is worth 10 points.

(Q-1) Let Vk (Rn) denote the space of k-tuples of orthonormal vectors in Rn. Show that Vk (Rn) is

a manifold of dimension k
(
n− k+1

2

)
. Hint: Use a map F : Mn×k (R)→ Rk(k+1)/2 such that

Vk (Rn) becomes the preimage of a regular value of F . (Here Mn×k (R) denotes the set of
matrices with n rows and k columns.)

(Q-2) Show that the product of two spheres Sp× Sq is parallelizable provided p or q is odd. (Here
parallelizable means the tangent bundle is trivializable; equivalently, there exist (p+q) vector
fields on Sp × Sq which are everywhere linearly independent.)

(Q-3) Let Mm ⊂ Rn \ {0} be a compact smooth submanifold of dimension m. Show that M is
transverse to almost all k-dimensional linear subspaces in Rn. (Here “almost all” means that
the set of subspaces that are not transverse to M has measure zero.)

(Q-4) Let ω ∈ Ωn
c (Rn) be a compactly supported n-form. Show that ω = dη for some compactly

supported (n− 1)-form η ∈ Ωn−1
c (Rn) if and only if

∫
Rn ω = 0.

(Q-5) Let n ≥ 0 be an integer. Let M be a compact, orientable, smooth manifold of dimension
4n+ 2. Show that dimH2n+1(M ;R) is even.

(Q-6) Let f : C → C be a nowhere zero continuous function. Prove that there exists a continuous

function g : C→ C such that f(z) = eg(z) for all z ∈ C.
(Q-7) In this problem, work in either the category of topological manifolds or smooth manifolds

(your choice). Let M be an n-manifold. Define its orientation double cover M̃ , and explain
its structure as a topological/smooth manifold. Prove that the orientation double cover of

M̃ is always disconnected.
(Q-8) Let M be a connected non-orientable manifold whose fundamental group G is simple (that

is, has no non-trivial normal subgroup). Prove that G must be isomorphic to Z/2.
(Q-9) Let X be the quotient of the space {0, 1, 2} × S1 ×D2 by the relation

(0, z1, z2) ∼ (1, z1, z2) ∼ (2, z1, z2) ∀z1, z2 ∈ S1.

(Here S1 is the unit circle and D2 is the unit disk, both inside R2.) Compute the homology
groups of X with integer coefficients.

(Q-10) Consider the following subsets of R3:

Z = {(0, 0, z) | z ∈ R}
C1 = {(cos θ, sin θ, 0) | θ ∈ R}
C2 = {(2 + cos θ, sin θ, 0) | θ ∈ R}.

Prove that there is no self-homeomorphism of R3 that takes Z ∪ C1 to Z ∪ C2.
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