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Abstract

We introduce a method called MASCOT (Multi-Agent Shape Control with Optimal Trans-
port) to compute optimal control solutions of agents with shape/formation/density con-
straints. For example, we might want to apply shape constraints on the agents – perhaps
we desire the agents to hold a particular shape along the path, or we want agents to spread
out in order to minimize collisions. We might also want a proportion of agents to move to one
destination, while the other agents move to another, and to do this in the optimal way, i.e.
the source-destination assignments should be optimal. In order to achieve this, we utilize the
Earth Mover’s Distance from Optimal Transport to distribute the agents into their proper
positions so that certain shapes can be satisfied. This cost is both introduced in the terminal
cost and in the running cost of the optimal control problem.

1 Introduction

Optimal control seeks to find the best policy for an agent that optimizes a certain criterion. This
general formulation allows optimal control theory to be applied in numerous areas such as robotics,
finance, aeronautics, and many other fields. Inherently, optimal control optimizes the control of a
single agent, but in recent years, extending optimal control problems to the realm of multi-agents
has been a popular trend. Indeed, there are numerous cases where we want to model not just a
single agent, but many, e.g. a fleet of drones.

Here we introduce MASCOT: Multi-Agent Shape Control with Optimal Transport, a method
to compute solutions to multi-agent optimal control problems that involve shape, formation, or
density constraints among the agents. These constraints can be formulated in the running cost of
the agents, or as a terminal cost, or even both.

We first introduce the reader to optimal control and its multi-agent version. We then review
the idea of optimal transport and Earth Mover’s Distance. Finally, we demonstrate the method
on some examples.

2 Related Works

In terms of multi-agent shape/formation constraints, as noted in [29], some methods rely on the
use of leaders [5, 6, 15, 28, 10] to help agents make formations. Others are more behavior-based
[2, 3, 20]. And there are some that rely on a virtual-structure approach [16]. Methods based
on consensus of agents has also been considered in [13, 26, 29, 22]. There is also work based on
potential functions [30, 9]. There are also many algorithms for solving multi-agent optimal control
problems based on different assumptions on how the multi-agents interact: [23, 25, 8, 17].

In terms of using the assignment problem, [12] used various assignment algorithms to match
agents with destinations so as to improve surveillance. In [21], they experiment with solving the
assignment problem in order make agent formations, but do not place it into an optimal control
framework. Recently, in [11] they apply discrete optimal transport in a capability-aware fashion
to assign agents to moving targets. A survey of multi-agent formation control is provided in [24].

Further, related to the field of multi-agent optimal control are the field of Mean Field Control
and Mean Field Games [19, 27, 14].
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3 Background

We provide background on optimal control, multi-agent optimal control, and optimal transport.

3.1 Optimal Control

Optimal control seeks to find a control law that best optimizes a cost or payoff criterion. Here we
will stick with convention of minimizing a cost.

Given an initial point x ∈ Rn and an initial time t ∈ [0, T ], the system will follow the dynamics:{
ẋ(s) = f(x(s),u(s)), t < s < T

x(t) = x

where x, x(s) ∈ Rn for all s ∈ (0, T ), f : (Rn × U) → Rn, and U ⊆ Rm. We call x the state, and
u the control. Then we want to minimize the functional Jx,t : U → R where,

Jx,t[u]
def
= g(x(T )) +

∫ T

t

L(x(s),u(s)) ds

and where U def
= {u : u : (0, T ) → U} is called the admissable control set, g : Rn → R is the

terminal cost and L : (Rn × U) → R is the running cost. So optimal control seeks to find u ∈ U
that minimizes Jx,t.

3.2 Multi-Agent Optimal Control

There are many formulations of multi-agent optimal control, based on whether the control is
centralized or decentralized, or whether the agents communicate or not, and many other factors.
In this work, we consider a simple extension of optimal control with a centralized controller and a
finite number of agents. Later, the control can perhaps be decentralized with an imitation learning
algorithm as demonstrated in [18].

In this work, we consider the following multi-agent control problem where the dynamics mod-
eling the N agents are:{

ẋ(i)(s) = f(x(i)(s),u(i)(s)), t < s < T, 1 ≤ i ≤ N

x(i)(t) = x
(i)
0

and they want to collectively minimize the following cost functional:

J [{u(i)}Ni=1]
def
= g({x(i)(T )}Ni=1) +

∫ T

t

L({x(i)(s)}Ni=1, {u(i)(s)}Ni=1) ds.

We note that technically, if we stack the states {x(i)} into one concatenated vector, and we
stack the controls {u(i)} also into one concatenated vector, then this can viewed as a single-
agent control problem. This would model the realistic situation where a fleet of drones are being
controlled by a centralized controller, for example.

3.3 Earth Mover’s Distance and Optimal Transport

The problem of Optimal Transport seeks to find a transportation plan between two probability
distributions that is optimal. The cost of the plan also provides a distance metric between the
probability distributions, called Earth Mover’s Distance (also called the Wasserstein distance).

To aid explanation and because this is the most relevant case to us, we restrict ourselves to
discrete distributions: Suppose we are given two sets of points: {x(i)}Ni=1 and {z(i)}Mi=1, and we
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weight them with distributions a = (a1, . . . , aN ) ∈ RN and b = (b1, . . . , bM ) ∈ RM . So x(i) has
weight ai for example. Then we can define a cost matrix,

C = (cij) ∈ RN×M , cij = ‖ai − bj‖2, 1 ≤ i ≤ N, 1 ≤ j ≤M.

Then optimal transport seeks to find a transportation plan π = (πij) ∈ RN×M that minimizes the
following,

EMDC(a,b) = min
π

∑
ij

πijcij :
∑
j

πij = ai, for all i,
∑
i

πij = bj , for all j


and value of the minimum is called the Earth Mover’s Distance. The argmin is the transportation
plan π.

In the special case where N = M and a and b are the uniform distribution (i.e. ai = bi = 1/N
for all 1 ≤ i ≤ N), then we can just set a = (1, . . . , 1) and b = (1, . . . , 1). Then our problem simply
becomes an assignment problem. Although, optimal transport is actually much more general and
we take advantage of this: we can demand distributional preferences. For example, we may want a
proportion of agents to cover one destination and the rest to cover another destination. In this case,
we may have N agents, but only 2 destination points, which significantly reduces the computation
cost of the cost matrix from O(N2) (using the assignment algorithm), to O(2N) = O(N) (using
optimal transport).

Related to the computation of the Earth Mover’s Distance, is the computation of a regularized
Earth Mover’s Distance utilizing Sinkhorn iteration [4] and variants therein, which are able to
achieve faster computational times, sometimes even achieving near-linear time complexity [1].

4 Methods

In this section, we provide details on how to implement our method. We first explain the case of
controlling the multi-agent shape/density at terminal time. Then we explain how to implement
the method for the running cost.

4.1 Shape control at terminal time

As noted in Section 3.2, the agents’ dynamics are,{
ẋ(i)(s) = f(x(i)(s),u(i)(s)), t < s < T, 1 ≤ i ≤ N
x(i)(t) = x(i)

and they want to minimize the cost-functional,

J [{u(i)}Ni=1] = g({x(i)(T )}Ni=1) +

∫ T

t

L({x(i)(s)}Ni=1, {u(i)(s)}Ni=1) ds.

Suppose we want the agents to satisfy the shape/density of the reference points {z(j)}Mj=1. We set
the cost matrix to be,

C = (cij), cij = d(x(i)(T ), z(j))

where d is the cost between x(i) and z(i). For example, d can be the squared Euclidean distance.
Then we choose a distribution on the {x(i)}Ni=1, which we call a = (a1, . . . , aN ). We also choose a
distribution on the {z(j)}Mj=1, which we call b = (b1, . . . , bM ). Then we can add to the terminal
cost,

gshape(x
(1)(T ), . . . ,x(N)(T )) = EMDC(a,b)

where EMDC is the Earth Mover’s Distance as presented in Section 3.3, with cost matrix C.
The Earth Mover’s Distance and the transportation plan can be computed using standard linear
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programming, or one can use Sinkhorn iteration [4] to approximate the distance and transportation
plan.

Intuitively, the transportation plan π weights the cost matrix C, so that agents can then use
this information to find optimal assignments to the proper reference points.

4.2 Shape control in the running cost

In order to apply shape/density constraints along the trajectory of the agents, we first subtract
the mean from the agents and the reference points:

y(i)(t) = x(i)(t)− x̄(t), and w(j)(t) = z(j) − z̄,

where x̄(t) = 1
N

∑N
i=1 x

(i)(t), and z̄(t) = 1
M

∑M
j=1 z

(j)(t) are the mean. Then letting a and b be
the weight distribution of the y and w, as before, then shape constraints can be applied with,

Lshape({x(i)(t)}Ni=1) = EMDC(a,b),

where the cost matrix C is as before.
Subtracting the mean allows the agents to become agnostic to the actual position of the refer-

ence points, and now the agents can focus on the relative positioning amongst each other in order
satisfy the shape constraint. This also allows the optimal control problem itself to find optimal
paths for the agents, because otherwise the actual positions of the reference points would interfere.
One can even try to normalize the agents and reference points using bounding boxes, so agent
formations are agnostic to the actual diameter of the reference points.

4.3 Classical Direct Shooting for Optimal Control

Our approach to inducing shape constraints on the agents is generally agnostic to the method used
to compute optimal control problems. Thus in our numerical demonstration, we employ a very
simple and straightforward method to compute optimal control solutions – the direct shooting
method.

We first discretize the time domain:

0 = t0 < t1 < · · · < tS = T.

For convenience, we let the discretization be uniform with mesh size ∆t. Then denoting x
(i)
s

def
=

x(i)(ts) and similarly with u
(i)
s , if we use forward Euler approximations for the agents’ dynamics,

then we have, {
x
(i)
s+1 = x(i)

s + ∆t f(x(i)
s ,u(i)

s ), t < s < T, 1 ≤ i ≤ N

x
(i)
0 = x(i)(0)

(1)

Our cost function then becomes,

J [{u(i)
s }

i=N,s=S
i=1,s=1 ] = g({x(i)

S }
N
i=1) + ∆t

S−1∑
s=0

L({x(i)
s }Ni=1, {u(i)

s }Ni=1).

Then the shooting method starts out by making an initial guess for {u(i)
s }i=N,s=Si=1,s=1 , and then

we integrate according to the agent dynamics (1). We then update each u
(i)
s by gradient descent

on the cost function,
u(i)
s ← u(i)

s − α∇u
(i)
s
J

where α is the gradient descent step-size. We repeat this iteration until some convergence criterion

has reached, e.g. when the controls {u(i)
s }i=N,s=Si=1,s=1 cease to stop changing very much between

iterations.
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5 Numerical Demonstrations

Here we provide numerical demonstrations of our method. We first introduce the particular agent
dynamics we will use for all our experiments – the 2D double integrator. Then using the direct
shooting method as mentioned in Section 4.3 we examine the cases of having shape constraints in
the terminal constraint, then in the running cost. Afterwards, we examine the interplay between
shape constraints and obstacle avoidance and congestion/collision minimization. To compute the
Earth Mover’s Distance, we utilize the Python Optimal Transport (POT) toolbox [7].

5.1 Agent dynamics and the general cost function

In these numerical demonstrations, for each agent we will use the 2D double integrator:
ẍ = α

ÿ = β

x(0) = x0, y(0) = y0, ẋ(0) = 0, ẏ(0) = 0

Of course we then turn this into the first-order system by letting x1 = x, x2 = y, x3 = ẋ, x4 = ẏ,
so if x = (x1, x2, x3, x4)ᵀ, and we let u = (α, β)ᵀ, so finally we get,

ẋ(t) =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

x(t) +


0 0
0 0
1 0
0 1

u(t)

x(0) = (x0, y0, 0, 0)

Our cost functional will generally have the form,

J [{u(i)}] = gshape({x(i)(T )}Ni=1) +
1

N

N∑
j=1

1

2
‖(x3(T ), x4(T ))‖2

+

∫ T

0

N∑
j=1

1

2
‖u(j)(s)‖2 + Lshape({x(i)(t)}Ni=1) ds

So in all cases, we want the agents to have near zero velocity at terminal time, and we are at least
minimizing the squared norm of the control in the running cost.

5.2 Shape constraints at terminal time

In order to employ shape constraints at terminal time, we have reference points {z(j)}Mj=1 and
letting a be the weights for the agents and b be the weights for the reference points, then we have

gshape({x(i)(T )}Ni=1) = EMDC(a,b)

for a given cost matrix C = (cij). Here, we just let the cost matrix be the squared Euclidean
distance between agents and reference points, i.e. cij = ‖x(i) − z(j)‖2.

In Figure 1, we show that the agents are able to move to a “circle within a circle” shape/dis-
tribution. The agents at the starting time and terminal times are opaque and colored in blue and
orange respectively. Intermediate times are transparent.

We can also enforce proportionality constraints on the agents. In Figure 2, we have the agents
move to the destinations (2, 1.5) and (2,−1.5), but enforce that 2/5 of the agents go to the upper
destination, and the rest 3/5 go to the lower destination. We note that in this case, the number
of reference points {z(j)} is 2, and we merely let b = ( 2

5 ,
3
5 ). This saves on computational cost as

compared to the full assignment method as noted in Section 3.3.
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Figure 1 – Agents start from a rectangular
shape/distribution and move to a “circle in a
circle” shape/distribution. The agents at the
starting and ending times are opaque and col-
ored in blue and orange, whereas agents at in-
termediate times are plotted to be transparent.

Figure 2 – Agents start from a rectangular
shape/distribution and their destination is both
(2, 1.5) and (2,−1.5). We also enforce that they
divide themselves proportionally in a 2/5 − 3/5
proportion.

5.3 Shape constraints in the running cost

We can also enforce the agents to adhere to shape constraints along the path fo the agents. In the
running cost, we add the term,

Lshape({x(i)(t)}Ni=1) = EMDC(a,b).

In Figure 3 we make the agents maintain a “Flying V” shape along the path. In this case,
in order to maintain the shape even at terminal time, we also apply the same shape constraint
at terminal time, and we loosen the constraint so that it is merely the agent average that should
reach the destination of (2, 0).

We can also enforce proportionality constraints in the running cost as well. In Figure 4, we
enforce the agents to perform a pincer maneuver, but to also split in a ( 2

5 ,
3
5 ) proportion. Also, as

in Figure 2, the number of reference points is 2 again, saving on computational costs.

Figure 3 – Agents forming a “Flying V” along
the path. This is a demonstration of applying
shape constraints in the running cost.

Figure 4 – Agents performing a pincer maneu-
ver but also maintaining a ( 2

5
, 3
5
) split along the

path.
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5.4 Congestion and Obstacles

Here we demonstrate that we can still enforce shape constraints while avoiding collisions and
obstacles.

In Figure 5, we perform the same pincer maneuver as in Figure 4, but now we apply a congestion
penalty. This is enforced by using the Gaussian kernel in the running cost:

congestion penalty =
∑
ij

exp

(
− 1

2σ2

∥∥∥x(i)(t)− x(j)(t)
∥∥∥2)

where we chose σ = 0.15. We see that the agents do indeed avoid colliding.
And in Figure 6, the agents form the same “Flying V” as in Figure 3, but now with conges-

tion/collision penalty, and avoiding an obstacle. We note that compared to the case without an
obstacle, the “tip” of the “Flying V” differ. As the agents move towards their destination, we can
see a dynamic reassigning of roles – initially the “tip” of “Flying V” is the middle agent in the
right-furthest column, as can be seen in Figure 3. But with an obstacle, the agents dynamically
re-assign themselves, so now the role of the “tip” is a different agent.

Figure 5 – Agents performing a pincer maneu-
ver but now with a congestion/collision penalty,
but also maintaining a ( 2

5
, 3
5
) split.

Figure 6 – Agents forming a “Flying V” for-
mation, but now with a congestion/collision
penalty, and avoiding an obstacle.

6 Conclusion

In this work, we demonstrate that with MASCOT using Optimal Transport and the Earth
Mover’s Distance, we can apply shape constraints to enforce shape/formation/density constraints
on agents. We provide numerical examples and demonstrate that dynamic re-assigning of roles
can take place.
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