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Abstract

Let f € L*(R?) be a real funetion. The Rudin-Osher-Fatemi model is to minimize {||u] gy +
Allf —u[?}. Inthis ization problem, one thinks of f as a given image. and u as an optimal
“rartoon”, f—u as “noise” or “texture”, and A > 0 a “tuning parameter”,

We E:ma...a several variations of the x O-F model, ineluding {inf,, [jullay + A K« (f —u)|[].}
where K is a real analytic kernel, like a Gaussian, and we prove several el tary results
including the theorem that if f and K are both radial, then a mi
fimetion. We analyze and characterize the extremals of this functional and list some of their
properties.

1 Introduction and Motivations

A variational model for decomposing a given image-function f into u + » can be given by

?:_%ﬂxs sz +f£s;ue+i_
where Fy, Fy = 0 are functionals and X;, X are function spaces such that Fi(u) < oo, and
Fa(v) < oo, if and only if (u,v) € X; x X3, The constant A > 0 is a tuning (scale) parameter. A
good model is given by a choice of Xy and X3 so that with the given desired properties of w and v,
we have: Fi(u) << Fi(v) and Fa(u} >> Fi(v). The decomposition model is equivalent with:
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ﬁ.iim:s

In this work we are interested in the analysis of a class of variational BV models arising in the
decomposition of an image function f into cartoon or BV component, and a texture or oscillatory
component. This topic has been of much interest in the recent years. We first recall the definition
of BY functions.
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Definition 1. Let u € L] (R?) be real. We say u e BV if
mcl.\:&aﬁmﬂ : € CHR), sup |o(z)| < L = ||u|lpv < oe.

If u € BV there is an RY valued measure ji such that umu‘l“ = (ii); as distributions, a positive measure
1, and a Borel function 5: BT — S9-1 such that

and

Il _?_\.E\.nt_

(see Evans-Gariepy [16], for example).

1.1 Prior work

Assume f € L2(R9), f real. We list here several variational BV models that have been proposed
as image decomposition models.
Rudin-Osher-Fatemi [24] (1992) proposed the minimization

zwmvﬂ."_“,:__ii?rg_gi,
In this model, we call w a “cartoon” component, and f —u a “noise+texture” component of f, with
f =wu+v. Note that there exists a unique minimizer u by the strict convexity of the functional.
A limitation of this model is illustrated by the following example [21, 13]: let f = ayxp, d = 2,
with D a disk centered at the origin and of radius B; if AR > 1/a, then u = (o — (AR)"Y)yp and
v=f—u=(AR) 'xp; if AR < 1/ov, then u = 0. Thus, although f € BV is without texture
or noise, we do not have u = f, The work by Tadmor et al. [28], [29] aims to overcome this
limitation by eomputing hierarchical (BV, L?) decompositions u = 3" ug, where uy is a minimizer
of a specific ROF model at a dyadic scale Ag; in the particular case when f = axp, it was shown
that 3, up — f as k — oo, thus the intensity loss is diminished. A multiscale image representation
using novel integro-differential equation is proposed as an alternative to [28], [28] by Tadmor and
Athavale in recent work [27],

Chan-Esedoglu [12] (2005) considered and analyzed the minimization (see also Alliney [5] for
the one-dimensional discrete case)

,.maL__u__mci.\.: uldz}.

The minimizers of this problem exist, but they may not be unique. If d = 2, f = Xsio,r) then
elwﬂmmvuﬂgnzlcamna
W. Allard [2, 3, 4] (2007) analyzed extremals of
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where ¥(0) = 0, 7 > 0, v locally Lipschitz, Then there exist minimizers u, perhaps not unique, and
F{u>th e, ae (1)

where & denotes “measure theoretic boundary”. Also, Allard gave mean curvature estimates on
8 ({u>1}).

Y. Meyer [21] (2001} in his book Oscillatory Patterns in Image Processing analysed further the
R-O-F minimization [24] and refined it by proposing three other cartoon + texture minimization
models of the form

;_ |_.
g {lullsy + Nju—fllx }

where X is one of the spaces of functions on RY,
i ?zmu je ni =g ¥ T_&” je waow =F,

ar
X= ADQ : g Zygmund m_uﬂ.wcsw =E.

For the above definitions, we recall that:
(i) a function g € L}, belongs to BM O if there is a finite constant ¢ such that _mw_ Jola—ggldz <

¢ for all squares @ C RY, where gg denotes the mean of g over Q.

(if) a function g belongs to the Zygmund class if there is a finite constant ¢ such that [g(z +
y) + gle — y) — 2g(2)| < cly| for all z,y € RY.

Inspired by the proposals of Y. Meyer, recently a rich literature of models has been developed
and analyzed theoretically and computationally. We list the mare relevant ones.

Osher-Vese [31] (2002) proposed

int {Julsy + pllf — (u+ dv@) [} + Nl p— oo

to approximate the ( BV, &) Meyer's model and make it computationally amenable. Osher-Solé-Vese
|22] proposed the minimization

inf {ullpy + AlS - ully-1 }
and later Linh Lieu [20] generalized it to
inf { Jullay + Mf - uly-}, 5>0.
Similarly, Le-Vese [19] (2005) approximated (BV, F) Meyer's model by
int {[ullay + ullf — (u+div)l} + Ml saeo}-
wy
Aujol et al. [7, 8] addressed the original (BV, &) Meyer’s problem and proposed an alternate

method to minimize
in {[ul v + NI — (u+ ) 3},

subject to the constraint ||v|g < p.
Garnett-Le-Meyer-Vese [17] (2007) proposed reformulations and generalizations of Meyer’s (BV, E)
model, with E = B! (see also Aujol-Chambolle [10]), given by

ind {[lullay +pllf — (u+ ADIF+ Ndlla )}
uF e
where p> 1, 0 < o < 2, and exact decompositions given by

inf { v + Al ~ vl g2 }

P

{we say that a function g belongs to _wm._gu if there is a finite constant ¢ such that [|g(-+y) —2¢(-) +
90 =)l < clyl* for all y € RY).
In a subsequent work, Garnett-Jones-Le-Meyer (18] proposed different formulations,

ind {ullav + pllf = (u-+ ADI3+ Mdlpssor
with BNO® = I,(BMO), |v]l gy00 = | av|lgaro, and

inf { [ellgy -+l f = (u+ A+ Ml
.

waw = [latlp, 0 < & < 2 (where we recall that fp = (—A)2/2),
Generalizing (BV, H™#), (BV, By ), and the TV — Hilbert model [9], an easier cartoon-texture

decomposition model ean be defined using a smoothing convolution kernel K (previously introduced
in [17]):
; | | 1
Jnf {llullay + MK * (f w5, }. ¥

This can be seen as a simplified version of all the previous models.

We would like to mention that, following discussions at UCLA, former colleagues Elingborg
Olafsdottir and Stefan Valdimarsson became interested in this problem and also anlyzed the unique-
ness of solutions, as presented in a very interesting technical report [23).

2 The Variational Problems

In this paper we assume K is a positive, even, bounded and real analytic kernel on B? such that
[ Kdz =1 and such that K + u determines u (i.c. the map [® 3 u — K+ u is injective). For
example we may take K to be a Gaussian or a Poisson kernel. We fix A > 0, 1 < p < oo and
1< g < oo. For real f{x) € L' we consider the extremal problems

g g = inf{||u]| gy + Fpgalf —u) s ue BV} (2)

where
Fpaalh) = MK + hl|}.. (3)

Sinee BV ¢ LT and K € L™, a weak-star compactness argument shows that (2) has at least
one minimizer u (see Section 3 below for a more detailed argument). Our objective is to deseribe,
given f, the set Mg g 5(f) of minimizers u of (2) .
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The papers of Chan-Esedoglu [12] and Allard [2, 3, 4] give very precise results about the mini-
mizers for variations like (2) but without the real analytic kernel &, and this paper is intended to
complement those works.
femark 1. According to the definition of admissibality given in [2], the functional 7,  is admissible
for an appropriate choice of K, for instance take K to be bounded (i.e. heat kernel K, or Poisson
kernel P for some £ > (). Thus the regularity results from section 1.5 in 2] holds for minimizers in
My, ga(f). On the other hand, If K is not a Dirac delta function, then , ;  is not local as defined
in [2].

2.1 Convexity

Since the functional in (2) is convex, the set of minimizers My, \(f) is a convex subset of BV,
If p>1orif g > 1, then the functional (3} is strictly convex and the problem (2) has a unique
minimizer becanse K + u determines w.

Lemma 1. Ifp=g=1and if u; € Mp g, and uz € My . then

K+(f-w) Ks(f-u)

()]~ K+ (Fug)] et evervwhere S

and i di
P A N
Lt J#k, (5)

where for j = 1,2,
D = B = fipg
with |7] =1 and p; = 0.

Proof: Since M, ¢ 1(f) is a convex subset of BV, X1 js also a minimizer. This implies,

1
| e (-8 = L tiuitay + s
BV 1 ﬁmw
A
+ S UK (F =)l + K+ (f ~ o
On the other hand, using convexity of || - || and L1, we have
| w1 + 1
B2 <> lluilsy + Juallsv], and
| ug + v 1 o
s (1-2522) | < 500 =l + 1Ko~ ]
1
Combining (6) and (7), we obtain
+ 1
(| % (5 = B52)|| = SUK *(F = wdlls + 11K« ( = wa)ll),
which implies (4). Moreover,
llur + tiall gy = Jlullay + [luallsv- (8

5

Forj=1,2, let
Duy = ji; = juy, with |g;| =1 and p; > 0.

Then for k= 1.2, k # j, equation (8) implies

\.__u.»+ mww_&; n\%k.*\_m_%r

which implies (5). m]

2.2 Properties of u € M, ,\(f)
Lemma 2. Given an f € L', Suppose u is a minimizer of (2) such that u # f. Let

Du=fi=pp.

For each real-valued h € BV, write Dh = ¥ and 7 = m.ut + F; as the Lebesgue decomposition of 7
with respect to p. Then
_
7.\.3 &__a_:uy\»wka.w: _ IEAI 9

el Ll il _F
e
and ||F|| denotes the norm of the vector measure 0o, Conversely, if w € BV, u + f and (9) and
{10) hold, then u € Mpga(f).

Note that since u # f and K » (f — u) is real analytic, J, , is defined almost everywhere.
Proof: Let |¢| be sufficiently small. Since u is extremal, we have

where
with F =K #(f — u) (10)

,HQ_Q =

[+ ehllay — [[ullav + Fpgalf —u—eh) = Fpqalf —u) 2 0. (1)

mu - h._ + € !r+oﬁ_ _uu.

where in the last equality, we use the estimate (1+a)}/? = 1+ % + o{|a|). This implies,

On the other hand, we have

14 2ep- W+m
dp

i/

djs

av
du|

el -

diF |

1) du= el +e [ - L o).

I+ il v = [lull v = _m___s__+\gn+m

Moreover,
Foar(F =t —eh) = Fpaalf — ) = e \ (K + h)Jy gd + of )

- Lm\zx. Tyg)de -+ oflel)



since K is even (symmetric). By (11}, we have

7 dn

Taking +e and since the right hand side of the above equation does not depend on the sign of €,
we see that (9) holds.
The converse holds because the functional (3) is convex. O

L . %%L\a??i < lellll + olel)

Following Meyer [21], we define
d

Ju,
= lul? =¥y
hﬂu_—_ 7

=
I
=)
B,

=1
and note that |[v/|, is the norm of the dual of W' € BV, when W is given the norm of BV,
By the weak-star density of W1 in BV,

| o] < v 12)

whenever v & L2,
Remark 2. Taking h € BV in Lemma 2 such that #, = 0, i.e. Dhis absolutely continuous with
respect to Du, then (9) implies

7 MIM%L\._;. Jpg)dz =0, (13)
In particular, for any h € W', the above equation holds. Le.
1 L dv

[rssgas=3 [ 7 Lo (149

We have the following characterization of minimizers in terms of || - [l (following Meyer [21]).

Lemma 3. Let u € BV such that u # f, and let J,, be defined as in Lemma 2. Then u is o
minimizer for the problem (2} if and only if

1
[|K * Jpglls = & (15)
and i
[+ iz = Sl (16)
Proof: If u is a minimizer, we use Lemma 2. For any h & W1, (14) vields
1
lo € =
1K Ty g4 = 5

By (12)

[ 5 33| < Ml 1K+ Dl
I

7

and by setting h = u in (13}, we obtain
».\.Emﬂfftn& = ||u]| gv-
Therefore (15) and (16) hold.

Conversely, assume u € BV satisfies (15) and (16) and note that u determines Jpq- Still
following Meyer [21], we let &t € BV be real. Then for small e > 0, (12), (15} and (16) give

lu+ehlloy + MK * (F—u—eb)i > »\?+ ) (K * Jp,g)dz + N[K « (f — w1
= my.\.ifugt%+ ofe)
= Il +eA [ A(K « Jpqdde e [ WK + dpa)is + ol
= 0
Therefore u is a local minimizer for the functional (2), and by convexity that means u is a global
minimizer.
2.3 Radial Functions

Assume K is radial, K(x) = K(|z{). Also assume f is radial and f ¢ Myga(f). Then averaging
over rotations shows that each u € My, . (f) is radial, so that

fal

where g is invariant under rotations and where p(|z|) = +1 ae. dp. Let H € L) be radial and
satisfy [ Hdp =0 and H =0 on |x| < e, and define

1
wa) = [ iy ) =T

Then h € BV is radial and 5

Dh=i= m:&:m .

Consequently #, = 0 and (9) gives

o= i [ Bt ([, )

(0,5l ¥

so that ae. dp,

\ K vy o(x)de. (17)
=|ul

But the right side of (17) is real analytic in [y, with a possible pole at |y| = 0, and olyl) = £1
almost everywhere p. Therefore there is a finite set

{mam<- <) (18}
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Figure 1: Nlustration for Thm. 1.
of radii such that

n
T
Du = & > eihal{lrl =}
j=1

for real constants ¢y . . ., cp, where Ay_; denotes d — 1 dimensional Hausdorff measure. By Lemma
1, Jp,q Is uniquely determined by f, and hence the set (18) is also unique. Moreover, it follows from
Lemma 1 that for each 7, either ¢; > 0 for all u € Mpaalf) ore; <0 for all w e My (f). We
have proved:

Theorem 1. Suppose K and f are both radial. If f ¢ Myq(f), then there is a finite set {18}
such that all w € My ga(f) have the form

-

X pior)- (19)
1

H

J
Moreover, there is X* C {1,2,...,n} such thate; > 0 if je X+ while ¢; <0 if j ¢ X+,

Note that by convexity Mg,ga(f) consists of a single function unless p = ¢ = 1. In Section 2.6
we will say mare about the solutions of the form (19).

2.4 Example

Unfortunately, Theorem 1 does not hold more generally. The reason is that when u is not radial it
is difficult to produce BV functions satisfying # << p. For simplicity we take d = 2and p=g =1
(in this case we denote by J = Jy1 the function defined in (10)).

Let au.:__?,énﬁ £ _VSE2 0 and Ja+2,5) = J(@,y). Choose A 0 so that

U = AK # J satisfies |||, = 1, and note that _.mq = J. Notice that uw € C% solves the curvature
equation
AL

div A_dﬂ_v =U (20)
if and only if the level sets {u = a} are curves y = y(x) that satisfy the simple ODE 3" =
Ul 0)(1+ (4')*)* on the line. Consequently (20) has infinitely many solutions u and both u and
J satisfy (15} and (16). Hence by Lemma 3 u is a minimizer for f provided that

K+ (f-u)

=T @)

¥

7

Figure 2: Level curves of u are parallel curves. Almost any family of level sets is possible.

and there are many f that satisfy (21). For example, one can choose u and fsothat f—u=J.
Note that in this example u can be real analytic except on U~'(0) and not piecewise constant.
Similar examples can be made when (p, q) # (1,1).

2.5 Properties of Minimizers when q =1

Here we follow the paper of Strang [26].

Lemma 4. If g =1 and u € My ,(f), then u e My a(u)

Proof: If
[1fllay + MK * (u—B)llp < |lullav.

then by the triangle inequality
[Bllpy + MIE * (f = h)||p < [Jullav + MK+ (f — u)l
s0 that  is not a minimizer for f. O
We write
M=M= Mp1alf)
:
Lemma 5. Let uc BV. Then uw € M if and only if
d7 , | e
| - Gl < 10201+ NI (22)
for allh € BV, where Dh = 7.
Proof: This follows like the proof of Lemma 2. Let a < b be such that
p{u=a}Ufu=>b})=0. (23)

Then ttg5 = Min{(u— a)t,(b—a)} € BV and Diugp) = Xpeyendle

Lemma 6. Assume g =1.

fa} ffue M, then u,; € M.

(b} More generally, if u € M and if v € BV satisfies i, << fu and p, = py e diy, then
ve M.

10



Figure 3: Tllustration for the proof of Lemma 5.

Proof: To prove (a) we verify (22). Write pas = Xg gyt 50 that D(uas) = gy Let b € BV and
write Dh = 7. Then by (23)

di dav
= Xenzn,mﬂt + ((Pa + Xufz)gla ) m_m_&

=

is the Lebesgue decomposition of # with respect to ug, and

di dv di
Fr—dpgy = | §- 4, |\ 7.
\ Tyt ' "y
Then (22) for » and pap follows from (22) for g and v. The proof of (b) is similar, O

For simplicity we assume u > 0. Write £, = {z : u(z) > t}. Then by Evans-Gariepy (18], E;
has finite perimeter for almost every t,

L=<
[[ullav u\D X || vt (24)
and
L=
ulz) = \ Xe, (2)at. (25)
o
Moreover, almost every set Ey has a measure theoretic boundary 8, E, such that
Ag1(8.84) = |[Xg||sv (26)
and a measure theoretic outer normal fiy : 8, By — S9-1 so that
D(Xp,) = g1 |0, By (27)

Theorem 2. Assume q=1.

(a) If ue M, then for almost every t, Xg, € M.

(b) If u € M and u = 0, then for all nonnegative ¢, ..., cn and for almost all t) < ... < t,.
26XE, € M.
Proof: Suppose (a) is false. Then there is 8 < 1, and a compact set A C (0}, 50) with |A| > 0 such
that for all t € A (26) and (27) hold and there exists h; € BV such that

[1XE = hellgv + MK il |p < 8] XE, || v (28)
Choose an interval I = (a, b) such that (23) holds and [N A] > _m._ Define by =0 for t € I, 4, and

take finite sums such that 5

3 XE 1) At — gy (n— o), (29)
=1 %

11

31X v AE™ — Jjuas]l (n— o), (30)
=1 S
and &i € A whenever possible. Write hn} = 377 ;_,.Ebnwa, Then by (25) and (28) {A™} has a
weak-star limit b € BV, and by (28), (20) and (30), ~

i 1+5
[ltt,6 = || v + ALK * k|, < 5 Iluapllav,

contradicting Lemma 6. The proof of (b) is similar. O
We believe that the converse of Theorem 2 is false, but we have no counterexample.

2.6 Radial Minimizers

In this section we assume g = 1 and p = 1. For convenience we assume the kernel K — K is
Gaussian, so that K has the form

Kila) = K (3) (31)
and
Kov Ki =K e (32}
Note that (31) and {32) imply that
[|K¢* flly decreases int (33)
and for f € L' with compact support
Jim 11, £l = | [ gl (30
—00

For fixed A and ¢ we set
R(At) ={r > 0: X € M.

By Theorem 1 and Theorem 2 we have B(A,t) # 0. For t = 0 and X = T our problem (2) becomes
the problem
inf{[|ullay + Al — ullp}

studied by Chan and Esedoglu in [12], and in that case Chan and Esedoglu showed R(A.0) = [$,00).

Theorem 3. There ezxists ry = rg(A,t) such that

R(At) = [ro, o0). (35)
Moreover
[0,50¢) 3t — rg(t) is nondecreasing {36)
and
lim 7g(t) = oc. (37)
f—0o
12



Proof: Assume r ¢ R(A#) and 0 < s <r. Writea =2 > land f = Xppo,r)- By hypothesis there
is g € BV such that
llgllav + AllK: + (f — gllh < || Fllsv- (38)

We write g(z) = glaz), f(z) = flaz) = Xp(o,s)(x), and change variables carefully in (38) to get

alldlav +Nizg [ KETDG 9ol < il v

50 that " ;
i ar — ;= g
alallov + %7 [ KLY~ 500/ il oy < el v

and
ollallay + 3o [ |y + (F - 9))|ae’ < Flav-

Since o > 1, this and (33) show
llallsy + MU+ (F = Bl < || fllayv

so that s ¢ R(At). That proves (35), and (36) now follows easily from (33). To prove (37) take
9= 5X5(0,5), 5> r and use (34). |

We note that not all radial minimizers have the form X Blis)- This is seen by considering
separately, for large fixed ¢ and A, the function Xp(o,rs) t XB(or,) With 71 and rg — r; large.

2.7 Characteristic Functions

Still assuming g =1 we let £ be such that Xz € M. Then by Evans-Gariepy [16] 8,E = NUUK;,
where D(Xg)(N) = Ap1 (N} = 0, K; i compact and K; C 5, where S; is a C'—hypersurface
with continuous unit normal 7i;(z),# € 5, and 4; is the measure theoretic outer normal of E.
After a coordinate change write S; = {z; = fi(y)}.v = (21,...,34.,) with WV f; contimuous and
i {y. fi(y)) L (V;,1). Assume y = 0 is a point of Lebesgue density of (f;,1)7 (K}, let V © Rd-!
be & neighborhood of y = 0, let g € C§°(V) with g > 0. and consider the variation U = X, where
€ > () and
E,=EUu{0<zq<euly),yeV}

Then E C E,, and writing uy = X, we have

lucllav — [luollzv = \f, VA+IVU +e)?) = 1+ 195 )y = ofe) (39)
because by [16]
Ad-1((0E) U (E.\ E)) = ofe)

Ay ae. om K. Also, for a similar reason

NIK » (= va)ly = el [ udy + ol (40)

13

Together (39) and (39) show

.\<.§. A,\%}J@u%;\__\ udy > 0. (7.3)

Repeating this argument with ¢ < (), we ohtain:
Theorem 4. At Ay almost every & € 8,E,

_n:c.AII

(41)

s u distrifution on R4,

2.8 Smooth Extremals
For convenience we assume d = 2 and we take p =g = 1.

Theorem 5. Let u € C% 1 My 5(f) and assume u # f. Set By = {u > t} and J =
Then
() A(B.B) = A [T, K + Tddy,

(i) the level curve {u(z) = c} has curvature MK + J)(z), and
(iii) if [Wu| # 0, then
AK (),
o, |Vulz)]
Theorem 5 is proved using the variation w — u + e, h € C32. Tt should be true in greater
generality, but we have no proof at this time.

d
OB =~

3 Existence of minimizers

Although the proof of the existence of minimizers of our problem can be scen as a generalization
and application of more classical techuiques [1], [11], [30], we include it here for completeness in
several cases, We consider the cases of bounded domain @ and of the whole domain R4, with
various kernel operators Ku = K + uw. We recall that here, for u € BV(Q), |lu| pyg) denotes the
semi-norm

vy = supf [ udivindz : o € CY(Q.RY, sup (@) < 1, = € Q).

3.1 Bounded domain, general operator K and general case p> 1, 1 < g < oo

We recall that K(x) is non-negative and even on B with [E(z)dz = 1, thus K € L'(R%),
[l |Jgs = 1, with K1 =1 0. The linear and continuous operator v — Ku = K u is well defined
on L'(R¥). There are several ways to adapt linear and continuous convolution operators Ku to the
case of bounded domains @, e.g. as shown in [17].



Theorem 6. Assumep>1,1<qg< o0, A= 0, Q open, bounded and connected subset of RY, with
Lipschitz boundary 8Q. If f € LP(Q) and K : LY{Q) — L?(Q) is linear and continuous. such that
K xqll e gy = 0, then the minimization problem

; —
el o Wulavi@y + AIK(F ~ )y g, (42)

has an extremal u € BV(Q).

Proof: Let E(u} = ||u|pv + ME(f - w)[§. Infimum of E is finite since E(u) > 0, and E(0) =
MEfllf < oo. Let uy, be a minimizing sequence, thus inf, E(v) = limg oo Euy). Then E{uy) <
€' < o0, ¥n = 1. Poincaré-Wirtinger inequality implies that there is a constant ¢ — C'd, Q) =0
such that for all n > 1, we have [[u, — un gl < C'|[tn| gy, where Uy g is the mean of u, over Q.
Let vy, = 1y — y g, thus vy g = 0 and D, = Duw,,. Similarly, we have ltalll < € llonlmy-

Sinee @ s bounded, we have for some constant € > 0,

(C/NY0 2 |K(f — w2 > CLIK(S ~ wn)}
= Cil|Kun — Kf|[§ = Cil|(Kva — Kf) + Kun g}
1Kt — K fls = [ Kungl|”

2 Ct || Kun ol 1 (|1 K ol — 2] Kvw — K 1)
> CullKun gl (1K unglls = 2| K (Janl + 111)-

Let 2 = [|Kunglh and an = [K||([vnlly + [I£]1). Then za(zn — 20n) < AL — ¢ with
0 < an = [|K[(CC + ||fll1), thus we obtain 0 < &, < a, + /a2 + & < (% for some constant
C3 > 0, which implies
_.“.D._.r.a.._wh_

Ku =—___|K < Ch.
1K 2,1 0] IKxqlh < C

=20

Thanks to assumptions on K, we deduee that the sequence lung| is uniformly bounded. By
Poincaré-Wirtinger inequality we obtain [|uy||; < constant. Thus, [lun ] pvigy + lltmll (@) is uni-
formly bounded. Following e.g. [16], we deduce that there is a subsequence {un,} of {u,}, and
u € BV(Q), such that uy, converges to u strongly in L'(Q). Then we also have [l gyigy <
Liminfy, oo [[ttn, || 51y Since (un, — f} — (u— f) in LYQ), and K is continuous from L1(Q) to
LA@Q), we deduce that | K (un, — f)llp — [|K(u— f)]p as nj — oo. We conclude that

E(u) < liminf E(u,,) = inf E{v),

Ty —+00

thus u is extremal. (u}

3.2 Convolution operator K and particular case p=qg=1

In this section, we study the existence of minimizers for different choices of convolution kernels K p
in the particular case p=g = 1.

3.2.1 Smooth Kernels

M:H._uoma Kv = K; » v, where for example K; is the Poisson kernel of scale ¢ > 0. We have
Ki(g) = e K. Let f be a distribution such that |K; + f]l;1 < co. We recall our minimization
problem,

36 T (W) = Jullsy + AlKex (f —wllp}- (43)

To motivate the proposed minimization model (43) with ¢ > 0 for the decomposition of an
image f into a BV component u and an oscillatory component f — u (rather than taking t = 0),
we consider the following two examples of functions or distributions f with | K¢ # fllg: small while
[ £llzs is Jarge.

Ezample 1. Suppose f(z) = sin(2mnz), z € R, is an oscillatory funetion. Then K= f =
2sin(2rna)e” ™. For Q = [—m/n, m/n], we have

8mi
1K # fllprggy = el

—2win

On the other hand, ||f]|p1g) = 42. Clearly, |K; » fll;1 < [|f]lp when n is large.
Ezample 2. Suppose we are in R and f = ¥ a;4,, with ey la] < oo can also be seen as a
(generalized) oscillatory distribution. Note that £ ¢ L'(R). However,

I1&e» fllg <3 o] < oe.
=0

Recall that by using the standard property of convolution (Young’s inequality), we have for all
vELP 1<p<og,
K+ vller < [|[ Kl g llo] 2o = 0] 2o

Also, using the same arguments as the ones from Lemma 3.24 in Chapter 3 of [6], one obtains the
following result

Lemma 7. Let u € BV(RY). Then
M= —ul i < tfufpy. (44)
Theorem 7. Let Q = (0,1) or @ = B, A > 0. For each distribution f such that | K= fll < o0,

the variational problem (43) has a minimizer.

Proof. Let {un} be a minimizing sequence for (43). This minimizing sequence exists because
J(u) = 0 for all u € BV(Q) and J(0) = ||K;» fll111q) < oo, We have the following uniform
bounds,

luallmvigy < C, (45)
(1K = (f — wndllpyg) < €. (46)
Suppose @ = RY, then
lumllziigy < lum — K= tnllragg) + 1Ko+ unl i) < Hiun] mvigy + 1Ke * un | Ligy- (47)
16



This shows that ||uy, | (@) is uniformly bounded. On the other hand, if @ = (0,1)%, then (45)
and (46) imply that [fu,|;1g) i uniformly bound. Indeed, suppose (45) and (46) hold. Let
Uy = Uy — Ung as before, then
[wnllzvig) < C.
By Poincare's inequality, we have
llwallsigy = lwn — wnellee < Collwalav = €.
Bat,
[tn | = K = tn qlles < 1Ky % um[| gy + 1Ko # wall 11y < |IK * i | iy + | wnll gy < €,
thus wuy, g is uniformly bounded. Moreover, by applying Poincare’s inequality to u,, we have
ltnllzs < [Qllungl + [lun — tngll 1y < |Qungl + C |t || pyvigy = C-

Therefore, |Jug||11;g) is uniformly bounded.

Now, using the compactness property in BV and the lower semicontinuity property of the map
u = |Jull gy [16, 6], there exists uw € BV((?) such that, up to a subsequence (which we still denote
by ttn ),y — w in LY() and

llullpvig < liminf ||un | gy (q). (48)
Moareover,
[t * (= ) 13y < l[un = ull gy — 0, 85— oo, (49)

This together with the asumption that K, « f € L'(Q), we have
[ B+ (f = willpigey < Jim [[Kye (F = un) gy (50)
Combining (48} and (50), one obtains
J(u) < liminf T(uy),
T

which shows that u is a minimizer. =]

3.2.2 Riesz Potential
Recall the Riesz potential I, 0 < o < d, defined as [25]
Lf=(-A)y""2f =K, (51}

where Ko (€) = (2n[¢])™*. For each o & (0,d), the homogeneous Sobolev potential space W~ is
defined as .
W= = {f: Ioflls < oo}

Equipped with the norm |[f| .. = [Faf]lz1, W~"! becomes a Banach space. From Stein [25]
(Chapter V, Section 1.2), if 1 < p < co and 1/g = 1/p — a/d, then
Had ll Loy < Apgl Il o ety (52)
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Here we would like to madel the oscillatory component using I, 0 < a < d. Thus the variational
problem (43) can be rewritten as

Lot AT () = [lullpy + MK (F = @)l ) (53)

Theorem 8. Let Q = (0,1)%. For each 0 < o < d and a distribution f such that [1Ean 2y < o,
the above variational problem (53} has a minimizer.

Proof. Again, as before, let {u,} be a minimizing sequence for (53). We have

[lunllavig < €, (54)
1K e * (f = un)ll ooy < C. (55)
As i the proof of Thm. 7, condition (55) implies that tinq is uniformly bounded, and so by

Poincare’s inequality, ||u,| < €, for all n. This implies that the BV-norm of w, is uniformly
bounded. Thus, there exists u € BV such that, up to a subsequence, w, — u in L' and

Iy < liminf Ju| gy

=00

By the compactness of BV in L?, 1 < p < d/(d — 1), we have up to a subsequence, ty, — u in L?,
1<p<df(d—1). Now for a fixed p € (1,d/(d — 1)), we have

1K # (un — )1 < Gyl Koy # (i, — Wiy < Cogllttn — ulls — 0 as n — oo,
This implies, up to a subsequence,

K= (f =l = lm (Ko » (f = un)]| g1

M0

Therefore, u is a minimizer. [m]

4 Characterization of Minimizers 2

In this section, we apply the general duality techniques of Ekeland-Temam [15] and in particular
of Demengel-Temam [14] to our minimization problem. We note that these results may be seen as
related with the other characterization of minimizers from Lemma 2 and Lemma 3, but expressed
and proven here in a different language.

4.1 Dual problem and optimality conditions p = g=1

Let [ : L'(@Q) be the given data, with ¢ < R? open, bounded, connected, and K a smoothing
(analytic) convolution kernel, such as the Gaussian kernel or the Poisson kernel. The minimization
problem forp=1,g=11s

(P) _‘mwﬁﬁemﬁcv = [lullzvig) + ME * (u— £)llzr gy

18



using the notation [|ulgyiq) = [ |Dul for the semi-norm of u in BV(Q). As we have seen, this
prablem has a solution u € BV(Q) < L*(Q). For u € L}(Q), we will also use the operator notation
Ku = K »uto be the corresponding linear and continuous operator from L' to L1, with adjoint K*
(with radially symmetric kernel K, then the operator K is self-adjoint). We wish to characterize
the solution u of () using duality techniques.
We have
inf Elu)= inf E{u),
wEBV(Q) weWli(g)

since for any u € BV(Q), we can find u, & Wh(Q) such that u, — u strongly in L'(¢}) and
[lunll v gy — 1wl eyvigy- Thus let's first consider the simpler problem

(P o, B0 = [ 19 4 M (= sy

We now write (Py), the dual of (P;), in the sense of Ekeland-Temam [15). We first recall the
definition of the Legendre transform (or polar) of a function: let V and V* be two normed vector
spaces in duality by a bilinear pairing denoted (-,-}. Let ¢ : V — R be a function. Then the
Legendre transform ¢* : V* — R is defined by

@ (') = sup { (u", uj — e?a.

usl

We let Gi(uo) = A [y [ug — K » fldz and Gy() = [, |@|de, with Gy = LV(Q) — R, Gy :
LYQ)* — R, and using w = (wg, w, wa, ..., wg) € L (Q)*, we define Glw) = G1(wy) + Ga().

Let A= (Ku, Vu) : WW(Q) — LY{@)%!, and A* be its adjoint. Then E(u) = F(u) + G(Au),
with Flu) =0.

Then (P7) is ([15], Chapter III, Section 4):

3) sup  =FATp") - G (-p").
P eL=(Q)

We have F*(A'p*) =0 if A®p* =0, and F*{A*p*) = +o0 otherwise. It is easy to see that
G'(p") = Gilpg) + G3(p"), for p° = (p5,p").
‘We have that,
Giti) = [ pit + s
if |pf| < A ae., G(pf) = +oc otherwise, and
Gi(p') =0

if [p*| < 1 a.e., G3(P*) = +o0 otherwise.
Thus we have
) swp- \n (=p)(K » f)dz,

PEX

whore X = {(§, 5}, . 9§) = (o8, 5") € L=(Q)*, [pg] <, || < 1, A%p* =0)}.
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Under the satisfied assumptions, we have that inf(P;) = inf(#) = sup(Py)* and (P}) has at
least one solution p*.
Using the definition of A, we can show that [30]

X = {(p3pis i) = (95,07) € L2, [pj] < X, 17°] <1, K*py—divg” =0, p*-» = 0 on Q).

Now let u € BV(Q) be the solution of (P;) and p = (py,5) € X be the solution of (P3). We
must have the extremality relation

leavig) + 1K *u— K s fllzs gy = \g polKC * f)da.

We have that Du- 7 is an unsigned measure, satisfying a Generalized Green’s formula

\U:,EH|.\§?&H+\ w(fi- v)ds.
Q Q aQ

Since §- v = 0 80 a.e., we have
\.Ea_,r\_r.éuxi_%+\¥x&n+\ u;.uu.\_gﬁ*b%up
Q Q Q Q o

or using the decomposition Du = Vude+D,u = Vudr+CytJy = Vudz+Cy+(u —u~ udHo! lii
[18], with S, the support of the jump measure J,. we get

\.%g_%+\. _9_4_\ ?fa-zxf\.q?u&f\ 7-Co
(o] Sy Ha Q Q\Su

+Az+|u-vu.e%n-_ +\c_~f:-xé&ﬁ%;m&?\%xé&i.
- Q

Since for any function ¢ and its polar ¢* we must have ¢* (u")—{u*, u}+d(u) = 0foranyu e V
and u* € V*, we obtain:

LK su— K+ f|— (=pg)(K +u)+ {—pg)(K + f) > 0 for dr a.e. in 0

2. |Vu| = Vu- (=p) + 02 0 for dz ae. in €2 where Vu(z) is defined

3. 0—(—p) - Cy +|Cul = (14 p- h)|C,| = 0, since [p] < 1 (lotting C, = h- |Cul, b € LY{|Cu))4,
Ia=1)

40— (=p-v)lut —uw )+ (ut —w) = (ut —u" )1+ ¥) = 0 for dH* ae. in S, (again
since |f] < 1).

Therefore, each expression in 1-4 must be exactly 0 and we obtain another characterization of
extremals u:

Theorem 9. u is a minimizer of (Py) if and only if there is (py,py,-.pa) = (po.B) € (L8t
such that
lpol <A, Bl <1,

B-v=0on 8¢,
Kpy — divp = 0,
1K =(u—f)|+po(Ksu-K»f)=0, (56)
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|Vu| + Vu-5=0,
1+p-v=00n8, and |p|=1 on S,
and
supp|Cul © {2 € R\ S 1+ B(z) - ha) = 0, h & LY(|CUYY, |k =1, C, = hiC]}.
42 Casel<pg<oo
A similar statement as Thm. 9 can be shown for the general case 1 < p.q < oo. The main change
is in the definition of Gy, which becomes Gy (1) = AJwy — K # f]j§ = yh Jglwo — K + .m_v&“ué_u for
wp € IP(Q). For example, if 1 < ¢ < oo, then G}(p}) = imx B + f(K » :mi and (56)
changes accordingly, where L + L =1 and 4% =1 (similarly in the case 1 < p < o0, g =1).

5 Numerical results for image decomposition into cartoon and
texture

Figure 4: Test image to be decomposed.

We show in this section a few numerical results for decomposing the Barbara image presented in
Fig. 4 into “cartoon” u and “texture” v = f — u, with different (symmetric) kernels K, minimizing
in u,

E(u) = \_...,_dc_ + MK #(f —u)|lg, (87)

thus p = g = 1. These arc obtained by discretizing using finite differences the Euler-Lagrange
equation, which for u € W) ¢ BV(12), can formally be writen as
K«+(f-u) . ¢rVu
A e ﬁ__,.ﬁ_q:_u.

21

Figure & A decomposition of f from Figure 4 using the model (57) with the kernel being the
characteristic function of a square centered at 0 having 3-pixel length for the sides, and A = 1.5.

5.1 Averaging convolution kernel K
Let B be a set containing 0 and Kp(z) = }»\mﬁuu be the averaging kernel. We have

Kg» f(z) = m, Ka(z —5)f(y) dy = @ \m fa—y) dy.

Figures 5-6 [17] show decompositions of f from Figure 4 using the model (57) with a non-
smooth averaging kernel K, where B is a square centered at 0 with sides parallel to the axis. Both
decompositions use p = 1, and A = 1.5. However, the decomposition in Figure 5 uses the square
with 3-pixel length for the sides, while the other uses the square with 5 pixel length.

5.2 Gaussian convolution kernel K
In Fig. 7, we show a decomposition result using a smooth kernel K, given by the Gaussian kernel
of standard deviation .
5.3 Riesz potential K
Here, we use the Riesz potential I, to define the kernel K, as in (51). Problem (57) is equivalent
with

J 196+ 37—l (58)

The following results are taken from prior work [18].
Figure 8 shows a decomposition of f from Figure 4 using the model (58). Here the oscillatory
component v € W=%!, o =0.1, A = 1.25.
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Figure 6: A decomposition of f from Figure 4 using the model (57) with the kernel being the Figure 8: A decomposition of f from Figure 4 using the model (58). Here the oscillatory component
characteristic function of a square centered at 0 having 5-pixel length for the sides, and A = 1.5. ve W=, o =01, A= 125

Figure 7: A decomposition of f from Figure 4 using the model (87) with the kernel being the Figure 9: A decomposition of f from Figure 4 using the model {58). Here the oscillatory component
Gaussian kernel of standard deviation e =1, p=1, and A = 1. veW-al o=05 A=15
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Figure 10: A decomposition of f from Figure 4 using the model (58). Here the oscillatory component
v € Wl o= —0.5, ) =30,

Figure 9 shows a decomposition of f from Figure 4 using the model (58). Here the oscillatory
component v € W, o = 0.5, A = 15.

Figure 10 shows a decomposition of f from Figure 4 using the model (58). Here the oscillatory
component v € W—%!, & = 0.6, A = 30.
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