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QUALIFYING EXAM
Geometry/Topology

March 2022

Attempt all ten problems. Each problem is worth 10 points. Justify your answers carefully.

1. Let M be a closed (= compact without boundary) 2n-dimensional manifold and let ω
be a closed 2-form on M which is non-degenerate, i.e., for any p ∈M , the map TpM → T ∗pM ,
X 7→ iXω(p), is an isomorphism. Show that the de Rham cohomology groups H2k

dR(M) 6= 0
for 0 ≤ k ≤ n.

2. Let M be a closed n-dimensional manifold. Let ω be a closed k-form on M , 1 ≤ k ≤ n.
Prove that for any p ∈M there is another closed k-form τ which vanishes on a neighborhood
of p and such that [ω] = [τ ] ∈ Hk

dR(M).

3. Let M be a closed n-dimensional manifold and let Ω be a volume form (i.e., a nonva-
nishing n-form) on M . Given a vector field X on M , its divergence div(X) is the smooth
function on M defined by the identity:

LX(Ω) = div(X)Ω,

where LX denotes the Lie derivative with respect to X.

(a) (5 pts) Prove that
∫
M

div(X)Ω = 0.

(b) (5 pts) Express div(X) in local coordinates.

4. Let ω be a smooth 1-form on a manifold M and let X and Y be smooth vector fields
on M . Use the Cartan formula for Lie derivatives to derive the following formula:

dω(X, Y ) = Xω(Y )− Y ω(X)− ω([X, Y ]).

5. Let N ⊂ Rn − {0} be a compact submanifold of dimension m. Show that N is
transverse to almost all k-dimensional linear subspaces in Rn. Here “almost all” means the
set of subspaces that are not transverse to N has measure zero.

6. Describe all the connected covering spaces of RP2 ∨ RP2. Here ∨ is the wedge sum.

7. Let X be a CW complex consisting of one vertex p, 2 edges a and b, and two 2-cells
f1 and f2, where the boundaries of a and b map to p, the boundary of f1 is mapped to the
loop ab3 (that is first a and then b), and the boundary of f2 is mapped to ba3.

(a) (5 pts) Compute the fundamental group π1(X) of X. Is it a finite group?

(b) (5 pts) Compute the homology groups of X with integer coefficients.

8. Let X be a topological space and let Y = (X × [0, 1])/ ∼, where (x, 0) ∼ (x′, 0) and
(x, 1) ∼ (x′, 1) for all x, x′ ∈ X. Compute the homology groups of Y in terms of those of X.

9. Let M be a compact odd-dimensional manifold with nonempty boundary ∂M . Show
that the Euler characteristics of M and ∂M are related by χ(M) = 1

2
(∂M).



10. Let A ∈ GL(n+ 1,C). It induces a smooth map

φA : CPn → CPn, [(z0, . . . , zn)] 7→ [A(z0, . . . , zn)],

where [(z0, . . . , zn)] is the usual equivalence class of (z0, . . . , zn) in (Cn+1−{0})/(z0, . . . , zn) ∼
(λz0, . . . , λzn), where λ ∈ C×. (You do not have to check the smoothness of φA.)

(a) (3 pts) Show that the fixed points of φA correspond to eigenvectors of A (up to multi-
plication by C×).

(b) (3 pts) Show that φA is a Lefschetz map if the eigenvalues of A all have multiplicity 1.

(c) (4 pts) Compute the Euler characteristic of CPn by calculating the Lefschetz number of
some φA.
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