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Abstract

An Evolving Micro-structural Model of Inelasticicty is modified to capture evolving
anisotropy resulting from underlying texture. Anisotropy is modeled via a second or-
der orientation tensor resulting from the truncation to second order of an orientation
distribution function and the temporal evolution of the tensor arises naturally from the
closure properties associated with the truncation. A scalar variable defined by the Eu-
clidean norm of the current state of the structure tensor and the direction of the rate of
continuing plastic deformation, is incorporated in the flow rule. The model predictions
is compared with yield surface data after various preloads for Aluminum 1100-O, dif-
ferences in compression versus torsion for 304L SS and large directional changes in
load path for AL 1100-O. Additional assessments of the model which compared the
predictions of the model with and without textural effects are provided.
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1. Introduction

Material models are powerful tools commonly employed in areas not limited to the
design of physical components and material processing. Specifically, material mod-
els capable of predicting evolving anisotropy are useful in the fabrication of parts
that entails load path changes or directionally dependent material design. Inclusion
of anisotropy in material models has been demonstrated using several modeling tech-
niques that employ either orientation distribution functions [1, 2], crystal plasticity [3,
4, 5, 6, 7, 8, 9, 10], anisotropic yield criterion [11, 12, 13, 14, 15, 16, 17, 18, 19], or
internal state variables (ISV) [20, 21, 22]. A material’s yield behavior can be described
adequately using a yield surface; a surface in stress space that describes the stress at
which the material begins to plastically deform. If a material exhibits no directional
dependence with respect to yield then its yield surface is isotropic. The evolution of
an isotropic yield surface can be described by the symmetric expansion and translation
of the yield surface using an isotropic and kinematic hardening respectively. Exper-
imental observations of polycrystalline materials indicated that the yield behavior is
directionally dependent at the onset of plastic deformation.

Anisotropic yield surfaces were captured in the experimental observations of Stout
et al. [23] and Brown [24], in which the yield surface of a material was experimentally
measured after various pre-loads using a five micro-strain offset definition of yield.
They both observe a change in the shape and orientation of the yield surface. In addi-
tion to using isotropic and kinematic hardening state variables to describe the evolution
of an anisotropic yield surface, the change in shape and rotation can be described by
using distortion and rotational hardening respectively. Wegener and Schlegel [25] char-
acterize this anisotropic behavior as a flattening, sharpening, symmetric shrinking, and
symmetric expansion of the yield surface with respect to the direction of plastic de-
formation. Lopes et al. [26] observed distortion hardening in the uniaxial and shear
testing of rolled Aluminum sheets. They also observed rotational hardening, as the ma-
terial exhibited different yield behavior depending on the orientation of the specimen
with respect to the rolling direction.

The development and evolution of anisotropy is physically linked to a phenomenon
occurring within a material’s micro-structure such as the changes in grain and sub-
grain orientation and the concentration of dislocation entanglements within grain and
sub-grain boundaries. Dafalias [27] demonstrated that anisotropic material behavior is
a result of the cumulative effect of loading a polycrystalline material where its grains
shared the same orientation to the direction of loading. Hockett et al. [28] attributed the
differences in saturation stress of an Aluminum 1100 specimen loaded in multi-axial
compression to the development of a stable sub-structures. Several specimens placed
under multi-axial loading were found to reach a stable grain and sub-grain concentra-
tion with negligible dislocation entanglements within its grain and sub-grain bound-
aries while specimen under uniaxial loading never achieved stable grain concentrations
and dislocation entanglements were still present within grain boundaries up to total
compression strains of 3.2 [in/in]. This is in agreement with the findings of Wilsdorf
and Hansen [29].
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Commonly used yield criterion to account for material anisotropy are the Bishop-
Hill [11, 12] and Y ld91 [13, 14, 15] criterion. The Bishop-Hill criterion is a modified
form of the Von Mises yield criterion using multiple scalar constants to account for
material anisotropy while the yield criterion is based on the linear transformation of
the deviatoric stress tensor described by a Hershey type yield criterion. Adebarro et
al. [30, 31, 32] incorporated temperature dependence into the anisotropic parameters
of the Y ld96 yield criterion by fitting the parameters taken at multiple temperatures
to 3rd and 5th order polynomials. Aretz [33] introduced deformation dependence to
the anisotropic terms of the Y ld2003 yield criterion by linear interpolation of the pa-
rameters taken at four finite strains. Stoughton and Woon [34] introduced a strain de-
pendence into the anisotropic parameters by replacing the four flow stress terms used
to determine the parameters with stress-strain relations. Desmorat and Roxane [35]
proposed a non-quadratic plasticity criteria based on Kelvin modes to model with suc-
cess the anisotropy in FCC nickel-base single crystals. Khan et al. [36] used extensive
experimental results to develop a yield criterion to describe the anisotropic yield behav-
ior and tension compression asymmetry characteristics of an electron beam single melt
Ti6Al4V alloy and obtained good agreements between the experiments and their model
predictions. Khan and Haowen [37] proposed an uncoupled anisotropic deformation
and ductile fracture criterion for Ti6Al4V alloy; to effectively account for anisotropy
and tension compression asymmetry in the material, a modified Hill anisotropic func-
tion proposed by the same authors is used to describe the geometry of the anisotropic
fracture loci in principal stress space. Ku [38] used the Khan-Liu model to represent
texture-induced anisotropy in AA7056 materials at different strain rates and temper-
atures. Qian and Wu [39] developed an analytic method to describe the evolution of
asymmetric yield surface and assessed the accuracy of the method by applying it to sev-
eral materials. Nixon et al. [40] developed an anisotropic elastic/plastic model to de-
scribe the quasi-static macroscopic response of α-titanium polycrystalline under quasi-
static conditions at room temperature; their formulation includes (i) an anisotropic yield
criterion that can capture strength-differential effects and (ii) an anisotropic hardening
rule that accounts for texture evolution associated to twinning.

Evolving anisotropy has been modeled using a scalar coaxiality term that describes
the alignment between the kinematic hardening and the direction of plastic flow. A
variable of this type was first introduced in a tensorial hardening variable by Key and
Krieg [41] in an effort to capture the shape of the uniaxial tensile stress in a load rever-
sal test. Miller et al. [42] introduced a kinematic hardening evolution equation with an
exponential dependence on a similar coaxiality term in an effort to replicate the rapid
evolution of the flow stress in sudden load path changes of OFHC specimens with var-
ious amounts of rolling reduction. Wegener and Schelegel [25] suggested a kinematic
hardening evolution equation that dependents on a coaxiality term to maximize the ef-
fect of hardening for a given change of plastic strain. Francois [43] suggested a model
that can capture a hyper-egg yield surface by incorporating a parameter computed from
the angle between the distorted stress and back-stress which allowed for a description
of all possible states with a reduced set of variables. Shutov and Ihlemann [44] pro-
posed a model with improved control of distortion hardening through the inclusion of
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a backstress-like second order distortion stress in which the yield criterion is depen-
dent on the angle between the effective stress and the distortion stress. Bammann et
al. [45] introduced the dependence of the isotropic hardening on a similar coaxiality
term in order to account for the reduction in saturation stress of a specimen experi-
encing cyclic loading. Chaboche [46] discussed a similar coupling of isotropic and
kinematic hardening to account for cyclic hardening and softening. Modeling of ma-
terial anisotropy with the coaxiality term introduced by Key and Krieg [41] suggested
the direction of anisotropy is entirely dependent on the kinematic hardening, however
it was suggested by Feigenbaum and Dafalias [47] and [48] that the physics supports
a distortion hardening that is independent of kinematic hardening. Prantil et al. [20]
presented a method of evolving material anisotropy using a second order orientation
tensor defined by the orientation distribution function of a unit vector bisecting two
slip systems in double planar slip. Modeling evolving anisotropy in this manner allows
the direction of anisotropy to evolve independently of the direction of kinematic hard-
ening. Rogueiro et al. [22] introduced an anisotropic yield criterion using a coaxiality
term that is dependent on the coaxiality of an orientation tensor describing anisotropy
and the direction of plastic flow.

The method in which anisotropy is included into a material model can greatly affect
the computational efficiency, accuracy, or complexity of the model. The ideal method
of including anisotropy into any existing model would be in a manner that does not
severely degrade or hinder the performance of the model while additionally not intro-
ducing a great deal of complexity to the model equations. Following these guidelines
will allow for anisotropy to be easily implemented into a commercially available finite
element software. One method for representing evolving anisotropy is a second order
tensorial variable that evolves with plastic deformation. This representation accounts
for anisotropy independent of other microstructural mechanisms. Anisotropic effects
can then be easily included in the model equations through a scalar variable describing
the angle between the developing texture and the direction of plastic deformation.

In this paper evolving anisotropy is modeled using a modified version of the Evolv-
ing Micro-structural Model of Inelasticity (EMMI) presented by Marin et al. [49]. Ma-
terial anisotropy is modeled using a second order orientation tensor and incorporated
into the flow rule via a scalar variable describing the coaxiality between the second
order orientation tensor and the direction of plastic deformation. The representation
of material anisotropy using a second order orientation tensor allows for the evolu-
tion of anisotropy independently of the kinematic hardening. The model is then tested
against anisotropic yield data of Aluminum 1100-O presented by Brown [24]. In ad-
dition, incompabilities due to the presence of dislocation and disclination defects are
also introduced in the model as the curl and the curl of the curl of the inelastic veloc-
ity gradient, and the distributions of the two defects are explored for several classical
micromechanical problems. The rest of the paper is structured as follows.

• The first section describes the original EMMI model constitutive relations and
its extended version to account for anisotropic and texture effects using structure
tensor as described above.
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• The section that follows compares the analytical yield surface the modified EMMI
model predicts with the experimental results of Brown [24] for several sets of the
model parameters. Besides theses comparisons, the section presents the texture
effects predictive capabilities of the model for simple and complex loads.

The following mathematical operations in direct notation are used in the remainder
of this paper. All bold face Greek or alphabetical letters indicate a tensorial quan-
tity. Therefore given the following second rank tensorial quantities A, B, C and scalar
variable γ, the norm of tensorial quantity is equivalent to ‖A‖ = [A : A]

1
2 where the

colon indicates a double contraction. The trace of a tensorial quantity is equivalent
to Tr [A] = A : I. The deviatoric portion of a tensorial quantity is equivalent to
Á = A − 1

3Tr [A] I. The product of two second rank tensorial quantities is equivalent
AB = C. Associativity and distributivity with respect to γ in conjunction with the
tensorial quantities A, B and C hold for cases where scalar or vector sums are valid
mathematical operations.

2. Methodology

2.1. The Constitutive equations of the anisotropic EMMI model

The model used in this study is the Evolving Micro-structural Model of Inelasticity
(EMMI) outlined in Marin et al. [49] modified to accommodate material anisotropy.
The EMMI model is a temperature and rate dependent phenomenological model that
uses two internal state variables to capture material hardening. The constitutive equa-
tions of the EMMI model consist of the following elements.

2.1.1. Kinematics
The EMMI model equations are derived in the intermediate configuration stem-

ming from the multiplicative split of the deformation gradient as presented by Lee and
Liu [50] and Lee [51]. The deformation gradient is given by:

F = FeFp (1)

where Fp is the plastic part of the total deformation gradient that facilitates mapping
relevant variables from the reference material configuration to the intermediate. Simi-
larly, Fe is the elastic part of the total deformation gradient that aids in mapping relevant
variables from the intermediate configuration to the current. The intermediate configu-
ration is a load free configuration associated with permanent deformation due to inter-
nal defects while the current configuration represents a material configuration with an
applied load. Following the thermodynamics for materials with internal state variables
presented by Coleman and Noll [52] and Coleman and Gurtin [53], the model equa-
tions are derived in a compatible load free intermediate configuration and then pushed
forward to the current configuration. The velocity gradient determined using Eq.(1) is:

l = ḞF−1. (2)
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Therefore, the symmetric and an antisymmetric portions of the velocity gradient are:

d =
1

2

[
l + lT

]
, w =

1

2

[
l− lT

]
. (3)

Both portions of the velocity gradient can further be decomposed into an elastic and
plastic parts such that:

d = de + dp, w = we + wp. (4)

2.1.2. Evolution equations for the internal state variables
Assuming linear elasticity and a homogeneous isotropic material the Cauchy stress

rate is:

◦
σ= σ̇− weσ + σwe =

σ

µ (θ)

∂µ (θ)

∂θ
θ̇+ 2µ (θ) d́e +B (θ) Tr(de)I (5)

where µ (θ) is the temperature dependent shear modulus, B (θ) is the temperature
dependent bulk modulus, and d́e is the deviatoric part of the symmetric portion of the
velocity gradient determined by:

d́e = d́− dp. (6)

2.1.3. Isotropic hardening
The isotropic hardening internal state variable is associated with the annihilation

and generation of statistically stored dislocations (SSD) where its evolution equation
is cast in a hardening minus recovery format. The dynamic recovery portion was in-
troduced by Kocks and Mecking [54] and Esterin and Mecking [55], while the static
recovery portion was presented by Nes [56]. The evolution equation is given by:

κ̇ =
κ

µ (θ)

∂µ (θ)

∂θ
θ̇+ (Hκ − Rdκ) ˙̄εp − Rsκ sinh

(
Qs

2µCκ
κ

)
(7)

where Rd (θ) is the dynamic recovery parameter, Rs (θ) is the static recovery parameter,
and Qs determines the order of the static recovery. The isotropic hardening modulus
(Hκ) is reduced to a single variable given by:

Hκ = 2µ (θ) CκH (8)

2.1.4. Kinematic hardening
The back-stress is a stress-like internal state variable associated with the annihi-

lation and generation of geometrically necessary dislocation (GND). In a similar ap-
proach, the evolution equation for the back-stress is cast in a hardening minus recovery
format given by the equation

◦
α= α̇− weα + αwe =

α

µ (θ)

∂µ (θ)

∂θ
θ̇+ hαdp − rd ˙̄εp

√
2

3
‖α‖α (9)

where rd (θ) is the recovery parameter and hα is the kinematic hardening modulus
which is reduced to a single variable

hα = 2µ (θ) Cαh (10)

for simplicity.
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2.1.5. Plastic flow
The plastic flow rule is given by:

˙̄εp = f ( θ) sinh

[
σeq

κ+ Y0
− 1

]m(θ)

(11)

where θ is the temperature variable, m ( θ) and f ( θ) are temperature dependent con-
stants associated with the rate sensitivity of the material, and Y0 is the initial yield
stress of the material. κ and α are internal state variables associated with annihilation
and generation of SSDs and GNDs, respectively. The equivalent stress is given by:

σeq =

√
3

2
‖ξ‖ (12)

where ξ is:

ξ = σ́ − 2

3
α (13)

and σ́ is the deviatoric portion of the Cauchy stress.

2.2. Anisotropic flow rule

The evolution of anisotropy is represented by a second order orientation tensor
outlined by Advani and Tucker [57, 58] and applied to polycrystalline materials by
Prantil [20], in which the orientation tensor is defined by the ODF of a unit vector
bisecting two active slip systems. The rate of change of material anisotropy is captured
using the orientation tensor given by the equation:

◦a= ȧ−wea + awe = λg

(
adp + dpa +

2

3
dp

)
+

2

3
λg (a : dp) I−2λg [B : dp] (14)

where λg is a fitted parameter associated with the orientation of active slip systems and
B is a fourth order orientation tensor defined as

Bijkl =

∮
F (ω)ωiωjωkωldω (15)

where where F (ω) is the orientation distribution function and ω is the unit vector
bisecting two active slip systems. Details on the derivation of Eq.(14) are not easily
accessible and for this reason only a summary of the process yielding to this equation
is given here. A short presentation of the derivation of these equations is also provided
in (Appendix A). This presentation is not indispensable but useful for a full grasp of
the foundations of the model.

A closure approximation is required in order to reduce the fourth order orien-
tation tensor to a function of the second order orientation tensor while maintaining
all required symmetries of the higher order tensor. Linear and quadratic closure ap-
proximations are two commonly used closure approximations in which Advani and
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Tucker [57, 58] showed that the linear closure approximation is exact for completely
random orientations and the quadratic closure approximation is exact for highly aligned
orientations. In order to maintain a higher degree of accuracy through all orientations,
they recommend a hybrid closure approximation that is a linear combination of the
linear and quadratic closure approximations using a scalar measure of orientation. The
contraction operation B : dp is given by:

B : dp =
1

7
[1− fa] [(a : dp)I + 2adp + 2dpa] +

2

35
[fa − 1] dp + fa [a : dp] a (16)

where fa is a scalar measure of orientation given by:

fa =
3

2
a : aT − 1

2
. (17)

The evolving anisotropy is incorporated into the flow rule of the EMMI model
through a scalar coaxiality term used to describe the degree of alignment between the
direction of plastic flow and anisotropy and is given by:

η (η̄) = C1 cos (η̄) + C2 cos (2η̄) + C3 cos (3η̄) + C4 cos (4η̄) . (18)

where C1, C2, C3 and C4 are fitted anisotropic parameters. The variable η̄ is given by
the equation:

cos (η̄) =
a
‖a‖

:
dp

‖dp‖
(19)

where a is the orientation tensor. The form of the coaxiality term is extended from
the work presented by Lubrada and Krajinovic [59] where they solved for the ODF
equation by expanding the dot product of various damage orientation tensors with ran-
dom direction tensors. This technique was later applied to polycrystalline materials
by Rogueiro et al. [22]. Similar forms of φ were presented in the works of Wegener
and Schlegel [25], Bammann et al. [45], Miller et al. [42], and Francois [43] where φ
was defined using the direction of the back-stress and the plastic flow. The anisotropic
parameters must sum up to unity, that is:

4∑
n=1

Ci = 1; (20)

this ensures that η = 1 when the direction of plastic flow is coaxial with the direction
of developed anisotropy.

The symmetric portion of the velocity gradient is given by:

dp =

√
3

2
˙̄εpN (21)
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where N is the modified direction of plastic flow. The scalar quantity ˙̄εp is the equiv-
alent plastic strain rate modified to account for the anisotropic behavior [22] which is
defined as:

˙̄εp = f (θ) sinh

[
σeq

η (η̄) κ+ Y0
− 1

]m(θ)

(22)

wherem (θ) and f (θ) are constants associated with the rate sensitivity of the material.
η (η̄) is the scalar coaxiality term and Y0 is the initial yield stress of the material. The
variables κ and α are internal state variables associated with annihilation and genera-
tion of SSDs and GNDs, respectively. The equivalent stress is given by:

σeq =

√
3

2
‖ξ‖ (23)

where ξ is:

ξ = σ́ − 2

3
α (24)

and σ́ is the deviatoric portion of the Cauchy stress.

The modified direction of plastic flow must account for the directional effects of
material anisotropy and is therefore given by:

N =
nT

‖nT‖
(25)

where nT is defined as:

nT = nσ − CσηnA (26)

where nσ is the direction of the equivalent stress given by:

nσ =
ξ

‖ξ‖
. (27)

The scalar Cση is the ratio:

Cση =
σeq

η (η̄)
. (28)

Details on the derivation of Eqs.(25, 26, 27, 28) and the ensuing equations Eqs.(29, 30,
31, 32, 33) are provided in Appendix A and Appendix B.

The direction of plastic flow imposed by the anisotropic term nA is defined by:

nA = ζ (η̄)

(
a− Cξa

ξ

‖ξ‖

)
(29)
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where the scalar ζ (η̄) is given by the expression

ζ (η̄) = m
[
C1 + 4C2 cos (η̄) + 3C3

(
4 cos2 (η̄)− 1

)]
+ m

[
16C4 cos (η̄)

(
2 cos2 (η̄)− 1

)] (30)

where m is difined as

m = [‖ξ‖ ‖a‖]−1 . (31)

The scalar Cξa is given by:

Cξa =
ξ : a
‖ξ‖

. (32)

The plastic part of the skew symmetric portion of the velocity gradient follows from
a constitutive definition presented by Prantil [20] and is given by the expression

wp =
1

λg
(adp − dpa) (33)

where λg is a fitted constant associated with the angle between active slip systems.
Bammann and Aifantis [60] proposed a similar form of the plastic spin based on the mi-
cromechanics of single slip. Other forms were proposed by Dafalias [61] and Loret [62]
using representation theorem.

3. Results/Discussion

In this section model predictions will be compared to the small strain offset yield
surface data of Brown [24], in which yield is determined by probing stress space after
various preloads. The precise steps employed by Brown were included in the simu-
lations. After a prestrain, loading was simulated, from the new prestrain origin, in a
direction in stress space until the 0.005 strain offset was reached. Then the material is
unloaded back to the origin, followed by repetition of the process in a new direction.
An alternate approach would be to ignore the effect of loading and unloading, and
determing the parameters that give the best ”fit” to the experimentally observed yiled
surface. The two approaches result in different sets of parameters and in matching the
exact steps used in the experimental process. The model is simplified following the
assumption that temperature change in the material is negligible henceforth all ther-
mally varying components are zero and the material remains at the initial temperature.
In addition, we assume material anisotropy occurs in the direction of plastic defor-
mation; therefore the coaxiality term remains at unity (η = 1.0). This also implies
that an isotropic material loaded uniaxially will not exhibit any anisotropy in any other
direction. Based on these assumptions, an uniaxial stress-strain data is sufficient for
identifying the parameters associated with the plastic part of the symmetric portion
of the velocity gradient dp. This also hold true for the isotropic (κ̇) and kinematic
(α̇) hardening rates. The model is further simplified following the assumption that the
static recovery contribution to the isotropic hardening rate is negligible (Rs = 0).
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Parameter Symbol Value Unit
κ̇-Equation
Hardening Hκ 11850 psi
Recovery Rd 2.26 -
Recovery Rs 0 1/s
Parameter Qs 1 -
Parameter Cs 1 -
α̇-Equation
Hardening hα 1.24E6 psi
Recovery rd 0.0245 -
Parameter Ca 1 -
ȧ-Equation
Parameter C1 2 -
Parameter C2 4 -
Parameter C3 2 -
Parameter C4 1 -
Parameter λg 1.3E5 -
σ̇-Equation
Yield Stress Y0 1700 psi

Shear Modulus µ 3.6E6 psi
Elastic Modulus E 10E6 psi
Poisson’s Ratio ν 0.3 -

Table 1: Material parameters for Aluminum 1100-O determined using multiple strain rate experimental data
of Hockett [63] and Brown [24]. Anisotropic parameters were fitted to anisotropic data of specimen 06 in
Brown [24]. The yield, shear, and elastic modulus are those reported in Brown [24].
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Figure 1: EMMI model parameters to fit to uniaxial compression data of Aluminum 1100-O [63]

From stability analysis of differential equations the efficient approach to integrating
any system(s) of ordinary equations is an implicit time marching algorithm. An implicit
time marching approach is efficient because larger time steps (∆t) can be taken without
compromising the numerical solution. The EMMI model equations are modified here
to account for texture and anisotropy requires additional numerical considerations.

Numerical integration was performed using a material point simulator written in
Mathematica 9 initially designed by [64, 65] to model multiphase materials. Without
any consideration for texture and anisotropy, the flow rule can be evaluated by treating
the effective plastic flow as either a function to be computed at every time step or as an
additional evolution equation. With η incorporated into the net effective plastic flow
there is an additional dependence on the plastic part of the symmetric portion of the
velocity gradient which is directly dependent on the effective plastic flow, that is, the
equation

η(φ) = f̂( ˙̄εp) (34)

where f̂ implies a functional. Therefore, the initial conditions for both plastic strain
(εp) and plastic strain rate (ε̇p) have to be prescribed. This numerical caveats becomes
important when implementing an either implicit or explicit integration algorithm for a
material subroutine in ABAQUS [66] finite element code.

The initial yield stress was assumed to be the approximate stress that demonstrated
a deviation from linearity in the uniaxial testing presented in Brown [24]. The uniaxial
parameters were simultaneously fitted to uniaxial compression data presented by Hock-
ett [63] taken at constant compression strain rates of ε̇ = 0.123s−1 and ε̇ = 1.13s−1 at
room temperature and the small strain uniaxial data presented by Brown [24].

The uniaxial stress strain data presented by Hockett was performed via cam plas-
tometer tests providing a constant axial compression deformation rate. Figure 1 is a
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Figure 2: Initial isotropic yield surface of Aluminum 1100-O predicted by EMMI model and compared to
the isotropic yield surface experimentally obtained by Brown [24]

plot comparing the fitted uniaxial model with multiple constant strain rate data of Alu-
minum 1100-O presented by Hockett [63]. Table 1 is a table listing all of the fitted
parameters and relevant material properties for the model. The subsequent anisotropic
yield surfaces of specimen 06 obtained by Brown [24] were then used to determine
the additional anisotropic parameters C1,C2,C3,C4 and λg to best capture the shape
change and rotation of the yield surface. The initial isotropic yield surface of Alu-
minum 1100-O was determined by integrating equations 22, 7, 9 at a constant total
stress rate of σ̇ = 85 psi/min at 128 different evenly spaced loading directions in stress
space. The initial conditions for each of the integrated equations were set to zero in
determination of the isotropic yield surface. Figure 2 is a plot comparing the model
prediction of the initial isotropic yield surface to the initial isotropic yield surface pre-
sented in Brown [24].

The first inelastic state was used to determine the anisotropic parameters C1,C2,C3,C4

which capture the shape change of the yield surface. The values of the internal state
variables at the first preload point were determined by integrating equations 7, 9 and
22 in pure reverse shear to a preload state with the axial component σa = 0 psi and
shear component

√
2σs = −3353 psi at a total constant stress rate of 85 psi/min.

The initial conditions of the internal state variables were set to all values equal to 0 to
replicate initial isotropic undeformed conditions. The internal state variables κ and α
at the end of the load step were then stored for yield surface calculation. The structure
tensor a is assumed to be fully evolved in the reverse shear direction, stemming from
the assumption there was no existing anisotropy prior to the initial preload step.

The anisotropic yield surface for the first inelastic state was determined by integrat-
ing equations 22, 7, 9 from the experimentally obtained center of the yield surface at
the first inelastic state, with σa = 0 ksi, σs = −2400 ksi the axial and shear compo-
nents of the center of the yield surface respectively. The internal state variables from

13



-2000 -1000 0 1000 2000
-3500

-3000

-2500

-2000

-1500

-1000

-500

σa [Psi]

2
σ
s
[P
si
]

Exp

Model

Figure 3: Comparison of experimentally obtained anisotropic yield surface of Aluminum 1100-O by Brown
[24] to the anisotropic yield surface predicted by the model. Inelastic state of Aluminum 1100-O at a preload
defined by an axial stress component σA = 0 psi and shear stress component

√
2σs = −542 loaded from

an initially isotropic unloaded state

the end of the first preload step are used as initial conditions for the respective evolu-
tion equations for integration from the center of the yield surface. To determine a yield
point, equations 22, 7, 9 are then integrated in a specified load direction at a total stress
rate of 85 psi/min until an accumulated equivalent plastic strain of 5 microstrain is
achieved. The stress state at the prescribed offset is then stored as the yield stress and
the process repeated for 128 evenly spaced load directions. Figure 3 is a plot compar-
ing the predicted anisotropic yield surface from the model to the experimental data of
the first inelastic state presented by Brown [24]. The model replicates the overall shape
change of the yield surface quite well, characterized by the sharpening of the yield sur-
face in the direction of the preload point and the flattening of the yield surface on the
side opposite of the preload point. The model does slightly over-predict the curvature
of the yield surface on the side opposite the preload point.

The state variables κ, α and a at the second preload was determined by integrating
equations 22, 14, 7, 9 from the first preload to the second preload defined by an axial
and shear component of σA = 508 ksi, σs = −3454 ksi respectively, at a constant
total stress rate of 85 psi/min. The final values at the first preload point of the internal
state variables κ and α, the structure tensor a, and the stress σ were used as the initial
conditions of the respective evolution equations in the integration from the first preload
point to the second preload point. The final state of κ,α, and a at the end of the second
preload step were stored and used as initial conditions for the integration of equations
22, 7, 9 in determination of each yield point of the second inelastic state. The material
is not being loaded from an initially isotropic condition, therefore the structure tensor
a must be evolved with deformation from the first preload point to the second preload
point, however it is assumed that the 5 microstrain in yield stress determination has
little effect on the direction of anisotropy and the direction of anisotropy is held con-
stant in the determination of the yield points in the yield surface determination. The
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anisotropic parameter λg is physically linked to the orientation of the active slip sys-
tems and controls the rate at which the structure tensor evolves towards the direction
of deformation. The λg controls how rapidly the structure tensor reaches a steady state
that is coaxial with the direction of plastic deformation.

The yield surface of the second inelastic state was determined in a similar manner
as the yield surface of the first inelastic state: integrating equations 22, 7, 9 from the
experimentally obtained center of the yield surface with axial and shear components
σa = 525 ksi, σs = −2500 ksi respectively. The values of κ, α, and a at the end of
the second preload step were used as initial conditions in the integration of equations
22, 7, 9 in the calculation of the yield stresses of the second inelastic state. Equations
22, 7, 9 were then integrated from the center of the yield surface in a prescribed stress
direction with a total stress rate of 85 psi/min until an accumulated equivalent plastic
strain of 5 microstrain was achieved and the stress at the 5 microstrain point was stored
as the yield stress. The process was repeated for 128 evenly spaced load directions and
the axial and shear components of the yield stresses plotted.

Figure 4 is a comparison of the experimental yield surface versus the yield surface
predicted by the model of the second inelastic state. The experimental yield surface
shows a rotation of the yield surface towards the direction of the preload accompanied
with a slight elongation of the yield surface to an egg shape, while the flattened side
of the yield surface remains relatively unchanged. The rate at which the yield surface
rotates is proportional to the anisotropic term λg, which physically describes the rate
the underlying material anisotropy develops in the respective direction of loading. The
model is able to replicate the overall rotation and elongation of the yield surface quite
well, but predicts a different curvature on the side of the yield surface opposite of the
preload point. The state of the variables κ, α and a at the third preload was determined
by integrating equations 22, 14, 7, 9 from the second preload to the final preload having
values for the axial and shear components σa = 0 ksi, σs − 542 ksi at a constant total
stress rate of 85 psi/min. The values of κ, α and a at the end of the second preload step
were used as initial conditions for the integration of their respective evolution equations
from the second preload point to the third preload point.

The yield surface for the third step was determined in a similar fashion as the yield
surface for the first and second inelastic states using the experimentally obtained yield
surface center with axial and shear components σa = 0 ksi σs = −1300 ksi respec-
tively. The values of κ, α and a from the end of the third preload step were used as the
initial conditions at the center of the yield surface corresponding to the third inelastic
state. Equations 22, 14, 7, 9 were then integrated at 128 evenly spaced loading direc-
tions at a total stress rate of 85 psi/min until an accumulative equivalent plastic strain
of 5 microstrain was achieved. Figure 5 is a plot comparing the prediction of the third
inelastic state to the experimentally obtained yield surface. The experimental yield sur-
face depicted a flattening of both the side of the yield surface facing the preload point
and the side opposite the preload point. The model predicts the flattening of the side
opposite the preload point, but predicts a slight sharpening of the yield surface near the
preload point. The sharpening predicted by the model indicates the texture is develop-
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Figure 4: Comparison of experimentally obtained anisotropic yield surface of Aluminum 1100-O by Brown
[24] to the anisotropic yield surface predicted by the model. Inelastic state of Aluminum 1100-O at a preload
defined by an axial stress component σA = 508 psi and shear stress component

√
2σs = −3454 loaded

from an initial preload defined by an axial stress component σa = 0 psi and shear stress component
√
2σs =

−3353 psi

ing in the positive shear direction even though the load point is still in the reverse shear
region of stress space.
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Figure 5: Comparison of experimentally obtained anisotropic yield surface of Aluminum 1100-O by Brown
[24] to the anisotropic yield surface predicted by the model. Inelastic state of Aluminum 1100-O at a preload
defined by an axial stress component σA = 0 psi and shear stress component

√
2σs = −542 loaded

from an initial preload defined by an axial stress component σA = 508 psi and shear stress component√
2σs = −3454 psi

4. Qualitative assessment of the model with texture effects

Accounting for textural evolution in a material model is important because a realis-
tic material response is necessary for a more accurate prediction. In an effort to test the
efficacy of the EMMI model with textural evolution we perform a multi-load numerical
experiment where by we specify a piecewise and distinct loading condition in between
a specified time interval.

The simulations were perfomred using [64, 65] numerical implementation of the
model. In these simulations, we turn on and off the differential equation responsible
for textural evolution Eq. 14. Conceptually, we start by simulating a rolling process.
We then proceed by undoing some of the rolling and rapidly following that up with
a shearing of the specimen. Herein, we believe that a model that accounts for tex-
tural evolution must capture the effects of the partial unrolling which creates a non-
uniformly aligned material.

For Stage 1, we load the specimen in tension by specifying a positive magnitude for
l12,2 = 0.5/s component and therefore for volume preserving deformation we specify
a negative magnitude on the l11,1 = −0.25/s and l13,3 = −0.25/s components. The
index zero e.g. l02,2 indicates l2,2 for stage zero of the numerical experiment. For Stage
2, we load the specimen in compression with l22,2 = −0.9/s, and therefore for vol-
ume preserving deformation we specify a positive magnitude in the l21,1 = 0.05/s and
l23,3 = 0.05/s components. For stage 3, we load the specimen in shear by specifying a
l31,2 = 0.6/s component of the velocity gradient.

To proceed, we integrate the constituve equations of the model while driving the
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deformation with the differential equation responsible for updating the state of the ma-
terial

Ḟ = LF. (35)

We replace the elastic symmetrical and anti-symmetrical portions (abbreviated by Sym
and ASym, respectively) of the velocity gradient in the equations of interest with:

de = Sym
(
ḞF−1

)
− dp and we = ASym

(
ḞF−1

)
− wp (36)

Figure 6 and 7 show the material response and corresponding plastic flow for all per-
tinent components of the deviatoric portion of the Cauchy stress tensor and flow rate
tensor with and without accounting for textural evolution. As shown, intuitively we ex-
pect less plastic flow (fig. 7b) in transition region from Tension-Compression to Shear
relative to the case where material texture is not accounted for. This is due to the me-
chanically induced non-uniform texture in the material. dp1,1 (fig. 7a) of the plastic
flow components shows an increased plastic flow in the aforementioned region and
hence a corresponding increase material response. In addition, there is also less plastic
flow in the dp2,2 relative to the dp1,1 as the non-uniformity was predominantly intro-
duced in the dp2,2 component of the velocity gradient.

(a) Time history of σ11. (b) Time history of σ12.

(c) Time history of σ22. (d) Time history of σ33.

Figure 6: Material response for the cases with and without textural effects. The load is a tension followed by
a compression and shear. Significant component of the Cauchy stress tensor were presented.
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(a) Time history of dp1,1 (b) Time history of dp1,2

(c) Time history of dp2,2 (d) Time history of dp3,3

Figure 7: Flow rate histories for the cases with amd without textural effects. The load is a tension followed
by a compression and shear. Significant components of the flow rate tensor are displayed.

5. Conclusion

The Evolving Micro-structural Model of Inelasticity, an existing rate and tempera-
ture dependent physically based plasticity model, was modified to account for evolving
anisotropy. This is in addition to the normal anisotropy associated with kinematic
hardening. Anisotropy was characterized by a second order orientation tensor, result-
ing from the truncation of the orientation distribution function associated with texture.
A constitutive equation for the plastic spin (skew symmetric part of the plastic velocity
gradient) has been derived in terms of this structure tensor. In addition, the structure
tensor was incorporated into the flow rule of the EMMI model via a scalar variable
describing the coaxiality of the structure tensor with the direction of the plastic rate
deformation. This coaxiality term scales the isotropic hardening variable in the flow
rule emulating the predicition from crystal plasticity that isotropic hardening (internal
strength resisting plastic flow) is larger if the direction of plastic flow continues in the
same (or nearly the same) direction of previous inelastic flow which is charaterized
by the structure tensor (texture). This internal strength becomes smaller as the differ-
ence in direction between the plastic flow and the the structure tensor increases. The
closure properties associated with the truncation of the ODF series to second order (
Advani and Tucker [57] ) yield a prescribed evolution equation for the second order
structure tensor. These modifications to the model were compared with experimen-
tally obtained anisotropic yield surfaces of Aluminum 1100-O by Brown [24]. The
anisotropic parameters of the model were fitted to replicate the evolution of the first
three anisotropic yield surfaces of specimen 06 presented by Brown. The predictions
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of the model compared favorably with the yield surfaces observed by Brown [24], pre-
dicting similar shape changes and rotations of the flow surfaces after various preloads.
Finally, we compared the material response under several complex loading conditions
for two cases: the case where the model accounts for textural effects and the case where
it does not. The results demonstrate the ability of the model to capture complex history
effects related to texture induced anisotropy.
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Appendix A. Incorporating anisotropy plasticity due to texture: generalities

The goal here is to derive and incorporate the anisotropic plasticity due to texture
in the EMMI model. Two important parameters for the plasticity model are derived in
this appendix: the plastic rate of deformation dp and the plastic spin wp.

It is assumed that the orientation of grains in aggregates are represented by a contin-
uous function representing the crystal orientation as orientation distribution functions
(ODF). In general the estimation of the distribution is first determined by achieving
a model or parametric form function that describes the orientation distribution. As-
suming that Γ(ω) is the given distribution density depending upon the unit vector ω.
We want to approximate the distribution density by F (ω) which involves indetermi-
nated parameters. In this study, ODF functions are represented by an infinite series in
polynomial form shown below:

F (ω) = a+ aiωi + aijωiωj + aijklωiωjωkωl + · · · . (A.1)

We also need a criterion to estimate the ODF parameters. The typical approximation is
to minimize the least square approximation as∫

[F (ω)− Γ(ω)]
2
dω −→ Min (A.2)

The ODF satisfies the conservative equation thanks to the fact that the number of crys-
tals in any initial interval of orientation does not change. Taking inspiration from the
previous work by Advani and Tucker [57, 58], we assume that the ODF has the peri-
odicity property which indicates that

F (ω) = F (−ω). (A.3)

Eq.(A.3) can be normalized by∮
dS =

∫ 2π

0

∫ π

0

sin(θ)dθdφ = 4π ,

∮
F (ω)dω = 1. (A.4)

Prantil [20] showed that the ODF satisfies the continuity equation

Ḟ (ω) + F (ω)∇ · ω̇ = 0. (A.5)

The parameters in Eq.(A.1) known as fabric tensor of third kind proposed by Kanatani
[67] can be derived from the equation

ai1,i2,i3,...,in =

∮
Γ (ω)

{
ωi1ωi2ωi3 · · ·ωin

}
dω, (A.6)

where

{
ωi1ωi2ωi3 · · ·ωin

}
is the deviatoric part of ωi1ωi2ωi3 · · ·ωin tensor. Using

the first two terms and by truncating the higher order terms, the ODF yields the expres-
sion

F (ω) =
1

2π
+

2

π
aijfij (ω) (A.7)
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where

fij (ω) = ωiωj −
1

3
δij

aij =

∮
Γ(ω)fij (ω) dω.

(A.8)

In Eq.(A.8) aij is the structure tensor componenent. Therefore, the orientation of actual
experimental data represented by Γ(ω) helps to identify a second rank tensor. Then,
the statistical distribution of the orientation can be represented by Eq.(A.7).

While the stress varies during the deformation process in materials, the crystal
structure may orient in different directions. The reorientation of the crystal indicates
that the tensorial constant aij in the ODF should vary in order to carry out the infor-
mation of the orientation of the crystal in aggregate. For this we intend to formulate
an evolution equation for the structure tensor to be able to carry the anisotropic texture
information during deformation process.

The continuity equation Eq.(A.5) indicates that the grain orientation update ω̇
should be determined. The plastic spin wp is the main cause of the grain reorienta-
tion. Then, from Prantil [20] the grain orientation update equation can be written as

ω̇ = wpω (A.9)

It follows that, the Jaummann derivative of the grain orientation is given by

ω̃ = ω̇− wω = λgdpω− λg (ω · dpω)ω (A.10)

Substituting the above Eq.( A.10) into the continuity equation Eq.(A.5) gives

∇ · ω̃ = ∇ · (λgdpω− λg (ω · dpω)ω) = −2λg (ω · dpω) (A.11)

with

Ḟ (ω) = F (ω) (2λgω · dpω) . (A.12)

The material time derivative of the structure tensor definition is

ȧij =
˙∮

F (ω) fij (ω) dω =

∮
Ḟ (ω) fij (ω) dω+

∮
F (ω) ḟij (ω) dω. (A.13)

From the grain orientation update equation Eq.(A.11) we get

ḟij = ω̇⊗ω+ω⊗ ω̇
= λg ((ω⊗ω− I) dpω)⊗ω+ λgω ((ω⊗ω− I) dpω)

= λg (dpω⊗ω+ω⊗ dpω− 2 (ω · dpω) (ω⊗ω))

(A.14)
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and the equation Eq.(A.15) expands as follows:

ȧij =
˙∮

F (ω) fij (ω) dω =

∮
Ḟ (ω) fij (ω) dω+

∮
F (ω) ḟij (ω) dω

=

∮
F (ω) (2λg (ω · dpω)) fij (ω) dω

+

∮
Ḟ (ω)λg (dpω⊗ω+ω⊗ dpω− 2 (ωdpω) (ω⊗ω)) dω

= 2λg (ω · dpω)

∮
F (ω) fij (ω) dω

+ λg

∮
F (ω) (dpω⊗ω+ω⊗ dpω− 2 (ω · dpω) (ω⊗ω)) dω

= 2λg (ω · dpω) aij + λg

∮
F (ω) (dpω⊗ω+ω⊗ dpω) dω

− 2λg (ω · dpω)

∮
F (ω)

(
ω⊗ω− 1

3
δij +

1

3
δij

)
dω

= −2λg (ω · dpω) aij + λg

(
adp + dpa +

2

3
dp
)

+
2

3
λg (ω · dpω)

∮
F (ω) δijdω

(A.15)

with

ȧ = λg

(
adp + dpa +

2

3
dp
)
− 2λgB : dp +

2

3
λg (ω · dpω) I (A.16)

Based on the multiplicative decomposition of the deformation gradient into elastic and
plastic parts F = FeFp the evolution equation for the structure tensor a in the interme-
diate configuration is

ã = Fp
(

˙
Fp−1aFp

)
Fp

−1

= ȧ− lpa + alp. (A.17)

Combining Eqs.(A.15) and (A.17) the evolution equation for the structure tensor a
becomes

ã = ȧ− wpa + awp

= awp − wpa + λg

(
adp + dpa +

2

3
dp
)

+
2

3
λg (ω · dpω) I− 2λgB : dp

(A.18)

where B is a fourth rank tensor defined as

Bijkl =

∮
F (ω)ωiωjωkωldω. (A.19)
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Appendix B. Closure approximation

The structure tensor aij is the moment of the distribution function F (ω), and its
evolution equation of a represents a closure problem. The evolution equation Eq.(A.18)
for any tensor always contains the next higher even-order tensor (Advani and Tucker [57,
58]). Therefore, the evolution equation of second order structure tensor contains a
fourth order tensor Bijkl. It is required to develop some approximation to obtain a
close set of evolution equations. The closure approximation should contain several
assumptions including

1. the approximation must only be from the lower order orientation tensors and the
unit tensor;

2. the approximation must satisfy normalization conditions in the equations as be-
low

aii = 1, Bijkk = aij ; (B.1)

3. the approximation should maintain the symmetry of orientation tensor:{
aij = aji
Bijkl = Bjikl = Bkijl = Blijk = Bklij .

(B.2)

In the susequent we use a linear closure approximation for the fourth order tensorBijkl
using all of the products of aij and δij .

For three-dimensional orientation the linear approximation of fourth order tensor
becomes

B̂ijkl =
1

7
(aijδkl + aikδjl + ailδjk + aklδij + ajlδik + ajkδil)

− 1

35
(δijδkl + δikδjl + δilδjk)

(B.3)

Another way to form a closure approximation is to omit the linear terms and take the
product of lower order tensors. This is known as quadratic closure, B̃ijkl , which is
defined as

B̃ijkl = aijakl (B.4)

The quadratic closure does not have all the symmetry properties of the components
Bijkl but it has the symmetry properties of elasticity tensor and presents no difficulty
for mechanical property predictions. It is worth mentioning that once this approxi-
mation is used in the evolution equation, it preserves the symmetry of the tensor aij .
In dilute short fiber composites, it is shown that the linear closure approximations are
exact for a completely random distribution of fiber orientation while the quadratic clo-
sure approximations are exact for perfect uniaxial alignments of the fibers. Hence, the
combination of the two closure approximations can offer the orientation information
for the entire range of orientations.
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A hybrid closure approximation B̄ijkl is constructed by combining the two pre-
sented approximations as

B̄ijkl = (1− f) B̂ijkl + B̃ijkl (B.5)

where f is a generalization of Herman’s orientation factor; it is equal to zero for ran-
domly oriented inclusions and unity for perfectly aligned inclusions. The scalar mea-
sure f is defined as

f = C1aijaji − C2 =
3

2
aijaji −

1

2
(B.6)

for three dimensional orientation which is an invariant of the structure tensor a. Apply-
ing the closure approximation to the last term in Eq.(A.18) we get

bijkldp,kl = (1− f)

(
− 1

35
(2dp) +

1

7
(adp + adp + (a : dp) δij + adp + dpa)

)
+ f (a : dp) aij

or in a compact form:

B : dp = (1− f)

(
− 1

35
(2dp) +

1

7
(2adp + (a : dp) I + 2dpa)

)
+ f (a : dp) a

(B.7)

Hence, the final evolution equation of the structure tensor reads:

ã = ȧ− wpa + awp

= −2λg (1− f)

(
− 1

35
(2dp) +

1

7
(2adp + (a : dp) δij + 2adp)

)
− 2λgf (a : dp) a + λg

(
adp + dpa +

2

3
dp
)

+
2

3
λg (a : dp) I− wpa + awp

(B.8)

with the equation

(a : dp) = ω · dpω (B.9)

where λg is a geometric parameter dependent on slip system orientation. The plas-
tic spin of the aggregate in the intermediate configuration is defined by averaging the
plastic spin in each grain using ODF as

wp =

∮
a (ω) wpg(ω)dω = λg (adp − dpa) .

The asymmetric part of the velocity gradient should be added to the skew-symmetric
part to obtain the velocity gradient in the deformation process

lp = dp + wp (B.10)
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The symmetric part of velocity gradient dp is defined separately by its magnitude ||dp||
and its direction N:

dp = ||dp||N (B.11)

The magnitude of the symmetric part of the velocity gradient which is called the evo-
lution of plastic flow is written in the unified creep plasticity form as

||dp|| =
√

2

3
f (θ) (sinh (Φ))

n(θ) (B.12)

where the function f(θ) determines the strain rate at which the model transitions from
rate-independent to rate-dependent behavior, n(θ) is the temperature dependent rate
sensitivity parameter and, the term inside the hyperbolic sine function called the plastic
potential Φ function is defined by the relation

Φ =

[
σeq

χ̄κ̄+ Y0
− 1

]
(B.13)

where σeq the magnitude of a second rank tensor including the deviatoric part of the
Piola-Kirchhoff stress; the back stress is defined as

σeq =

√
2

3
||ξ|| (B.14)

with

ξ = σ′ − 2

3
α. (B.15)

Two terms in the denominator of Eq.(B.13) are κ̄ and χ̄ which are related to the dislo-
cation density and the directional distortion.

The directional distortion is defined based on the cosine series as

χ̄ = 1 + a1 cos(η̄) + a2 cos 2(η̄) + a3 cos 3(η̄) + a4 cos 4(η̄). (B.16)

The angles in the cosine series are calculated from the angle between the stress tensor
ξ and the structure tensor a:

cos(η̄) = cos(η̄) =
ξ : a
||ξ||||a||

(B.17)

Since there is no flow surface defined for this model, the plastic potential function Φ is
used to define the direction of the plastic flow. The direction of plastic flow Np derived
as

N = sym

(
∂Φ̄

∂ξ

)/
||sym

(
∂Φ

∂ξ

)
|| (B.18)
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with

∂Φ

∂ξ
= ∂

[
σeq

χ̄κ̄+ Y0
− 1

]/(∂σeq
∂ξ

χ̄κ̄− κ̄∂χ̄
∂ξ

σeq

)/
(χ̄κ̄)

2

=
1

χ̄κ̄

(
∂σeq
∂ξ
− σeq

χ̄

∂χ̄

∂ξ

) (B.19)

where χ̄ and κ̄ are scalars which are related toward the equation

N = sym

(
∂Φ

∂ξ

)/
||sym

(
∂Φ

∂ξ

)
||

=
1

χ̄κ̄
sym

(
∂σeq
∂ξ
− σeq

χ̄

∂χ̄

∂ξ

)/
||sym

(
∂σeq
∂ξ
− σeq

χ̄

∂χ̄

∂ξ

)
||

(B.20)

with

∂σeq
∂ξ

=

√
3

2

ξ

||ξ||

and

∂χ̄

∂ξ
=

∂χ̄

∂ cos(η̄)

∂ cos(η̄)

∂ξ
=

∂χ̄

∂ cos(η̄)
∂

(
ξ : a
||ξ||||a||

)/
∂ξ

=
∂χ̄

∂ cos(η̄)

(
∂ (ξ : a)

∂ξ
||ξ||||a|| − ∂ (||ξ||||a||)

∂ξ
(ξ : a)

)/
||ξ||2||a||2

=
1

||ξ||||a||
∂χ̄

∂ cos(η̄)

[
∂ (ξ : a)

∂ξ
− ∂ (||ξ||||a||)

∂ξ

(ξ : a)

||ξ||||a||

]
=

1

||ξ||||a||
∂χ̄

∂ cos(η̄)

[
a− ∂ (||ξ||||a||)

∂ξ

(ξ : a)

||ξ||||a||

]
=

1

||ξ||||a||
∂χ̄

∂ cos(η̄)

[
a− ξ

||ξ||
(ξ : a)

||ξ||

]
=

1

||ξ||||a||
∂χ̄

∂ cos(η̄)

[
a−

(
(ξ : a)

(ξ : ξ)

)
ξ

]
=
a1 + 4a2 cos(η̄) + 3a3

(
4 cos2(η̄)− 1

)
+ 16a4 cos(η̄)

(
4 cos2(η̄)− 1

)
||ξ||||a||

×
[

a−
(

(ξ : a)

(ξ : ξ)

)
ξ

]

(B.21)

where the following relations

∂χ̄

∂ cos(η̄)
= a1 +4a2 cos(η̄)+3a3

(
4 cos2(η̄)− 1

)
+16a4 cos(η̄)

(
4 cos2(η̄)− 1

)
,

∂ (||ξ||||a||)
∂ξ

=
∂ (||ξ||)
∂ξ

||a|| = ξ

||ξ||
||a||,
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||ξ||2 = ξ : ξ

and

∂ (ξ : a)

∂ξ
= a

hold.
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