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Abstract 

An internal state variable constitutive theory provides a robust framework for incorporating irreversible, 

path dependent behavior. It contains developing a consistent kinematics based on the defined degree 

of freedom, chose the state variables and a function for free energy equation that shows the amount 

of energy inside material to do the work that is a function of defined state variables, evaluation 

of thermodynamics laws and drive the constraint equation and finally develop the constitutive equation. 

In this report, an anisotropic ISV based material model is developed. The deformation state is 

decomposed into elastic and plastic part and the kinematics quantities such as deformation gradients 

and their time derivatives in intermediate configuration are developed using proper mapping in terms of 

push forward and pullback operations section.1. Then, in section 2, based on the definition of the free 

energy in the intermediate configuration, and the thermodynamics laws, thermodynamics restrictions are 

defined to develop the constitutive relations. Anisotropic texture is considered based on a series 

of tensorial statistical distribution function that contains the information on grain orientations in the 

representative volume element (section 3). The first two terms in the series of the distribution function 

are considered that contains a scalar and a second rank tensor known as structure tensor. The 

evolution equation of structure tensor is shown and a closure approximation (section 3.1) is used to 

prevent the appearance of higher order terms of the series in the evolution equation of structure tensor. 

At the end, the whole set of constitutive equation to integrate is shown in section 4

1. Multiplicative decomposition of the deformation gradient
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The multiplicative decomposition of the deformation gradient into elastic and plastic parts (figure.1) is 

postulated as 

)1(
peFFF =

This can be described by a typical behavior in metallic materials which the material behaves elastically up 

to a certain point and then plastically deforms. The elastic part is defined as Xd
dxF e =  and the plastic part 

is dX
XdF p =  then in order to reproduce F through this decomposition and based on the chain rule we have

peFF
dX
Xd

Xd
dx

dX
dxF ===  based on the this decomposition three configurations can be identified for the 

deformation as the reference, intermediate and current configurations. F maps the infinitesimal line 

segment dX from the reference configuration B0 to the infinitesimal line segment dx in the current 

configuration B0. The multiplicative decomposition introduces a new configuration known as the 

intermediate configuration and is represented as 0B . Similarly 
pF maps dX to Xd and eF  maps Xd to dx. 

Figure 1 Multiplicative decomposition of the deformation gradient [Regueiro et al. 2001] 
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Velocity gradient defined in the current configuration is 1−= FFl   which can be represented through the 

decomposition as  

)2(  peeppeee llFFFFFFl +=+=
−−− 111   

Similarly the plastic velocity gradient in the intermediate configuration is  

)3(  1−
= ppp FFL   

Pulling back the velocity gradient in the current configuration to intermediate configuration the velocity 

gradient can be decomposed into pure elastic and pure plastic components. In this context the pure plastic 

and pure elastic means that all required map is defined by plastic and elastic deformation gradient 

respectively. 

)4(  peppeeee LLFFFFFlFL +=+==
−−− 111   

Therefore, the elastic velocity gradient which can be identified as pure elastic velocity gradient is defined 

by  

)5(  eee FFL 1−=  

The velocity gradient can be decomposed into the summation of symmetric and skew-symmetric 

deformation. The pure plastic velocity gradient can be written as: 

)6(  ppp WDL +=  

The symmetric part is defined as rate of deformation tensor and the skew-symmetric part is the spin or in 

this case pure plastic spin. These quantities can be derived from  

)7(  ⎟⎠
⎞⎜⎝

⎛ +=
Tppp LLD

2
1  

)8(  ⎟⎠
⎞⎜⎝

⎛ −=
Tppp LLW

2
1  

and pL can be mapped to the current configuration using the relation below 

)9(  1−
= epep FLFl  
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The elastic strains in intermediate and current configuration are: 

)10(  ⎟⎠
⎞⎜⎝

⎛ −= IFFE eTee

2
1  

)11(  ⎟⎠
⎞⎜⎝

⎛ −==
−−−− 11

2
1 eTeeeTee FFIFEFe  

F will be determined by balance of linear momentum l is derived, having pD and pW from constitutive 

equations then elastic velocity gradient in current configuration is derived pe lll −=   

2. Thermodynamics 

In this section, the thermodynamic in intermediate configuration is shown by the transformation of all the 

components in the thermodynamic laws from the current configuration based on the work of Regueiro et 

al 2001. The first law of thermodynamics for a body in current configuration states that the total energy 

rate is equal to the power input plus the heat input rate as 

)12(  ∫∫∫∫∫ +−+⎟
⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛ +

∂ BBBBB

dvdrdan.qdvl:dvv.v
dt
ddvev.v

dt
d σρρρ

2
1

2
1  

where ρ is the mass density, v is velocity, e is internal energy per unit mass, σ is Cauchy stress, l is the 

velocity gradient, q is the heat flux into B, n is unit normal to B∂ pointing out of B, and r is the internal 

heat supply per unit mass. Using the definition of material time derivative and cancelling the term of 

kinetic energy term in both sides, the first law can be written as  

)13(  ∫∫∫∫ +−=⎟
⎠
⎞⎜

⎝
⎛

∂ BBBB

dvrdan.qdvl:dv
dt
de ρσρ  

The thermodynamics in intermediate configuration is derived using following transformations: 

)14(  Ad)N.F(JdAN
Tpp1=, dVJdv e= , Q)q.F(J ee =

−1 , Teee F.S.F)J(1=σ , 

1−= FLFl , 
eJρρ =  

)15(  ∫∫∫∫ +−=⎟
⎠
⎞⎜

⎝
⎛

∂ BBB

e

B

VdrAdN.QVd)S.C(:LVd
dt
de ρρ  
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where )S.C( e is the Mandel stress and S is the second Piola-Kirchhoff stress in intermediate 

configuration. Applying the divergence theorem and rewriting the equations into the local form the first 

law of thermodynamic can be shown as 

)16(  rQ)S.C(:Le e ρρ +∇−=  

The second law states that over a body B in the current configuration the rate of entropy increase is 

greater or equal to the time rate of entropy that enters to the system  

)17(  ∫∫∫
∂

−≥
BBB

dan.qdvrdv
dt
d

θθ
ρηρ 1  

η is the entropy per unit mass, and θ  is the absolute temperature. Mapping the second law of 

thermodynamics using the above transformations into the intermediate configuration results into the 

following equation 

)18(  ∫∫∫
∂

−≥
∂
∂

BBB

AdN.QVdrVd
t θθ

ρηρ  

The local form of the second law in the intermediate configuration is 

)19(  ⎟⎟⎠

⎞
⎜⎜⎝

⎛
∇−≥

θθ
ρηρ Q.r  

The Helmoltz free energy per unit mass in the current configuration isψ   

)20(  ηθψ −= e  

Let’s assume that the free energy in the intermediate configuration can be described solely by elastic 

strain energy and thermal internal energy. Therefore, the free energy in the intermediate configuration is a 

function of compatible lattice deformation due to external mechanical forces, eE , lattice deformation due 

to the presence of statistically stored dislocations, ssε , incompatible lattice deformation due to the 

presence of geometric necessary dislocation at grain boundaries and around second phase particles, e
lα , 

and absolute temperature,θ : 
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)21(  ),,,E( e
lss

e θαψρψρ ε=  

The free energy in the current and intermediate configuration has the relation below 

)22(  ),,,e(),,,E( e
lss

ee
lss

e θαψρθαψρ εε =  

Combining the definition of Helmholtz free energy and first law of thermodynamics in the intermediate 

configuration in the second law in the intermediate configuration the Clausius-Duhem inequality in the 

intermediate configuration is  

)23(  01 ≥∇−+−− θ
θ

θηρψρ Q)S.C(:L e  

From the chain rule the time derivative of the free energy in intermediate configuration is  

)24(  θ
θ
ψψα

α
ψψψ 

∂
∂+

∂
∂+

∂
∂+

∂
∂= ss

ss

e
le

l

e
e :E:
E

ε
ε

 

By expending peee L:)S.C(E:S)S.C(:L +=   

)25(  01 ≥∇−+
∂
∂−

∂
∂−⎟

⎠
⎞⎜

⎝
⎛ +
∂
∂−⎟

⎠
⎞⎜

⎝
⎛ +

∂
∂− θ

θ
ψρα

α
ψρθη

θ
ψρψρ QL:)S.C(:E:S

E
pe

ss
ss

e
le

l

e
e ε

ε


 

Following Coleman and Noll, Coleman and Gurtin the to have an arbitrary value for the 
eE  and θ  the 

below constrain equations should be hold 

)26(  eE
S

∂
∂= ψρ, 

θ
ψη
∂
∂−=  

The stress like internal state variables conjugates to e
lα and ssε can be introduced as 

)27(  e
lα

ψρζ
∂
∂=, 

ssε∂
∂= ψρκ  

where κ is the scalar internal stress field in the lattice due to statistically store disolocations, and ζ is the 

internal dislocation stress field due to geometrically necessary dislocations. The dissipation inequality 

then reduces to 

)28(  01 ≥∇−−− θ
θ

καζ Q:D:S ss
e
l

p ε  
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The stored elastic energy within the crystal lattice and thermal internal energy are representing the 

Helmholtz free energy in the intermediate configuration assuming small elastic stretch 

)29(  )(g:)(c)(cE:)(:E e
l

e
lss

eee θααθµθµθψρ ζκ +++=
2
1

2
1

2
1 2εC  

Where I)()()(e θµθλθ 211 +⊗=C is the modulus tensor assuming linear isotropic elasticity, )(θλ and 

)(θµ are temperature dependent Lame parameters and )(θµ is the shear modulus, κc  and ζc are material 

constants and )(g θ is the internal thermal energy. 

)30(  
ee E:S C=  

)31(  θ
ψη
∂
∂−=  

)32(  ssk )(c εθµκ =  

)33(  
e
l)(c αθµζ ζ=  

The evolution for the lattice due to the evolution of the statically-stored dislocation density for 

representing both thermally activated hardening and dynamic recovery (first term) along with the static 

recovery from thermal diffusion of dislocations (second term) as 

)34(  ))(Q̂sinh()(R])(RĤ[ ssssss
eff,p

ssdss εεεεε θθθ −−=   

where Ĥ is the dimensionless hardening constant, )(Rd θ and )(Rs θ are the dynamic and static recovery 

function. 

3. Incorporating anisotropic plasticity 

The goal here is to derive the incorporate the anisotropic plasticity due to texture. Two important 

parameters for plasticity model is derived in this section are the plastic rate of deformation pD and plastic 

spin pW .  

It is assumed that the orientation of grains in aggregates are represented by a continuous function 

representing the crystal orientation as orientation distribution function (ODF). In general the estimation of 

distribution is first determined by achieving a model or parametric form function that describes the 
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orientation distribution. Assume that Γ(α) is the given distribution density, and we want to approximate 

the distribution density by A(α) which involves an indeterminate parameters. In this study, ODF 

represented by an infinite series in polynomial form shown below: 

)35(  ...AAA)(A lkjiijkljiij +++= ααααααα  

We also need a criterion to be able to estimate the ODF parameters. The typical approximation is to 

minimize the least square approximation as 

)36(  [ ] Mind)()(A →Γ−∫ ααα
2

 

The ODF satisfies the conservative equation owing to the fact that the number of crystals in any initial 

interval of orientation does not change.  

It is assumed that the ODF has the periodicity property which indicates that 

)37(  )(A)(A αα −=  

It can be normalized by  

)38(  1=∫ dS)(A αwhere πφθθ
π

φ

π

θ

4
3

0 0

== ∫ ∫∫
= =

ddsindS  

Prantil et al (1993) showed that ODF satisfies the continuity equation as 

)39(  0=+ )(div)(A)(A ααα   

The parameters in equation (35) known as fabric tensor of third kind proposed by Kanatani (1984) can be 

derived from equation below: 

)40(  { }∫Γ= ααααα d...)(A
nn iiii,...,i,i 2121

 

which { }
niii ...ααα

21
 is the deviatoric part of 

niii ...ααα
21

tensor 

Using the first two terms and by truncating the higher order terms, the ODF becomes 

)41(  )(fA)(A ijij α
ππ

α 2
2
1 +=  

where  
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)42(  ijjiij )(f δααα
3
1−=

 

)43(  ∫Γ= ααα d)(f)(A ijij  

where ijA  is called the structure tensor. Therefore, the orientation of actual experimental data represented 

by )(αΓ helps to identify a second rank tensor. Then, the statistical distribution of the orientation can be 

represented by equation (41). 

While the stress varies during the deformation process in material, the crystal structure may orient in 

different directions. The reorientation of the crystal indicates that the tonsorial constant ijA in the ODF 

should vary in order to carry out the information of the orientation of the crystal in aggregate. For this we 

intend to formulate an evolution equation for the structure tensor to be able to carry the anisotropic 

texture information during deformation process. 

The continuity equation (39) indicates that the grain orientation update α should be determined. The 

plastic spin pW  is the main cause of the grain reorientation. Then the grain orientation update equation 

can be written as 

)44(  αα pW=  

The Jaummann derivative of the grain orientation can be written as  

)45(  ( ) ( )[ ] αααλαλααααλααα )D.(DDDW p
g

p
g

pp
g −=⊗−⊗=−=   

Substituting above equation into the continuity equation gives 

)46(  0=+ )(div)(A)(A ααα   

)47(  
( )
( ) )D.()D.()D.()D(Tr

)(div)D.()D(div)D.(Ddiv)(div
p

g
p

g
pp

g

p
g

p
g

p
g

p
g

ααλααλααλ

αααλαλαααλαλα

2−=−−=

−=−=
 

)48(  ( ))D.()(A)(A p
g ααλαα 2=  

The material time derivative of the structure tensor definition is 
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)49(  ∫∫∫ +==
•

ααααααααα d)(f)(Ad)(f)(Ad)(f)(AA ijijijij


 

From the grain orientation update equation (45) 

)50(  
( ) ( )

( ))()D.(DD

D)I(D)I()(f
ppp

g

p
g

p
gij

ααααααααλ

ααααλααααλααααα

⊗−⊗+⊗=

−⊗⊗+⊗−⊗=⊗+⊗=

2


 

)51(  

( )
( )

( )
( )

( ) ( )
( ) ( )

( )

ij
p

g
ppp

g
p

g

ij
p

g
ppp

gij
p

g

ijij
p

g

pp
gij

p
g

ppp
gij

p
g

ppp
g

ij
p

g

ppp
g

ij
p

g

ijijijij

)D.()DADDA(D:bA

d)(A)D.()DADDA(A)D.(

d)()(A)D.(

dDD)(AA)D.(

d)()D.(DD)(AA)D.(

d)()D.(DD)(A

d)(f)(A)D.(

d)()D.(DD)(A

d)(f)D.()(A

d)(f)(Ad)(f)(Ad)(f)(AA

δααλλλ

αδαααλλααλ

αδδαααααλ

ααααααλααλ

ααααααααααλααλ

ααααααααααλ

αααααλ

αααααααααλα

ααααλα

ααααααααα

3
2

3
22

3
2

3
22

3
1

3
12

2

22

2

2

2

2

++++−=

++++−=

+−⊗−

⊗+⊗+=

⊗−⊗+⊗+=

⊗−⊗+⊗+

=

⊗−⊗+⊗+

=

+==

•

•

∫
∫

∫
∫

∫
∫

∫
∫

∫∫∫ 

 

Having A in the intermediate configuration: 

Based on the multiplicative decomposition of the deformation gradient into elastic and plastic 

parts pe FFF =  the evolution equation for the structure tensor in intermediate configuration is 

)52(  pppppp LAALAF)FAF(FA +−==
•−

•
− 11

 

Considering the symmetric AAT = therefore the evolution equation can be represented 

)53(  
pp WAAWAA +−=

•

 

Combining equations (51) and (53) the evolution equation of the structure tensor is 
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)54(  
p

gij
p

g

ppp
g

pppp

D:b)D.(

)DADDA(AWWAWAAWAA

λδααλ

λ

2
3
2

3
2

−+

+++−=+−=
•

 

where b is a fourth rank tensor defined as 

)55(  θααααα d)(Ab lkjiijkl ∫=  
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3.1 Closure Approximation 

The structure tensor ijA is the moment of the distribution function )(A α , and the evolution equation of A 

presents a closure problem. The evolution equation (54) for any tensor in the set always contains the next 

higher even-order tensor (Advani&Tucker 1987). Therefore, the evolution equation of second order 

structure tensor contains a fourth order tensor ijklb . It is required to develop some approximation to obtain 

a close set of evolution equation. The closure approximation should contain several facts including:  

1- The approximation must only be from the lower order orientation tensors and the unit tensor.  

2- The approximation must satisfy normalization conditions in equations (56) and (57)  

)56(  1=iiA  

)57(  ijijkk Ab =  

3- The approximation should maintain the symmetry of orientation tensor (equations (58) and (59)) 

)58(  ijij AA =  

)59(  klijlijkkijljiklijkl bbbbb ====  

Hand (1962) proposed a closure approximation known as the linear closure approximation for fourth 

order tensor ijklb  using all of the products of ijA and ijδ . Applying Normalization and symmetry 

requirements (equations 56 - 59) shows that the only linear terms may be used that is called linear closure 

approximation shown by ijklb̂  

For three-dimensional orientation the linear approximation of fourth order tensor becomes 

)60(  ( ) ( )iljkikjlijkljkiljlikklijjkiljlikklijijkl AAAAAAb̂ δδδδδδδδδδδδ ++++++++−=
7
1

35
1  

Another way to form a closure approximation is to omit the linear terms and take the product of lower 

order tensors. This is known as quadratic closure, ijklb~ , which is proposed by several authors (Doi 1981, 

Marrucci & Grizzuti 1984) 
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)61(  klijijkl AAb~ =  

The quadratic closure does not have all the symmetries of ijklb (equation 59) but it has the symmetries of 

elasticity tensor and presents no difficulty for mechanical property predictions. It is worth mentioning that 

once this approximation is used in the evolution equation, it preserves the symmetry of ijA . 

In dilute short fiber composites, it is shown that the linear closure approximations are exact for a 

completely random distribution of fiber orientation while the quadratic closure approximations are exact 

for perfect uniaxial alignments of the fibers. Hence, the combination of the two closure approximations 

can offer the orientation information for the entire range of orientations. A hybrid closure approximation 

ijklb is constructed by combining the two presented approximation as 

)62(  ijklijklijkl b~fb̂)f(b +−= 1  

where f is a generalization of Herman’s orientation factor; it is equal to zero for randomly oriented 

inclusions and unity for perfectly aligned inclusions. The scalar measure f is defined as 

)63(  
2
1

2
3

21 −=−= jiijjiij AACAACf  

for three dimensional orientation which is an invariant of ijA . 

Applying the closure approximation to the last term in equation (54)   

( ) ( ) kl
p

klijiljkikjlijkljkiljlikklijjkiljlikklijkl
p

ijkl
p DAAfAAAAAA)f(DbD:b ⎥

⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞⎜

⎝
⎛ ++++++++−−== δδδδδδδδδδδδ

7
1

35
11

( ) ( )( ) ( ) ij
ppp

ij
ppppppp

ij AD:AfADDAD:ADAAD)D(TrADD)D(Tr)f( +⎟
⎠
⎞⎜

⎝
⎛ ++++++++−−= δδ

7
1

35
11

( ) ( )( ) ( ) ij
ppp

ij
ppppp AD:AfADADD:ADADAD)f(D:b +⎟

⎠
⎞⎜

⎝
⎛ +++++−−= δ

7
12

35
11  

)64(  ( ) ( )( ) ( ) AD:AfADD:ADAD)f(D:b pp
ij

pppp +⎟
⎠
⎞⎜

⎝
⎛ +++−−= 22

7
12

35
11 δ  

Hence, the final evolution equation of the structure tensor reads 
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)65(  ( ) ( )( ) ( )
( ) pp

ij
p

g
ppp

g

pp
ij

ppp
g

pp

WAAWD:A)DADDA(

AD:AfADD:ADAD)f(

WAAWAA

+−++++

⎟⎟⎠

⎞
⎜⎜⎝

⎛
+⎟

⎠
⎞⎜

⎝
⎛ +++−−−

=+−=
•

δλλ

δλ

3
2

3
2

22
7
12

35
112



 

)66(  ( ) αα pp D.D:A =  

gλ is a geometry parameter dependent on slip system orientation. The plastic spin of the aggregate in the 

intermediate configuration is defined by averaging the plastic spin in each grain using ODF as 

)67(  ( )∫ −== ADDAd)(W)(AW pp
g

p
g

p λααα  

The asymmetric part of the velocity gradient should be added to the skew-symmetric part to obtain the 

velocity gradient in the deformation process.  

)68(  ppp WDl +=  

The symmetric part of velocity gradient pD is defined separately by its magnitude pD and its 

direction pN .  

)69(  ppp NDD =  

The magnitude of the symmetric part of the velocity gradient which is called the evolution of plastic flow 

is written in the unified creep plasticity form as  

)70(  ( )mp sinh)(fD Φ= θ
2
3  

where the function )(f θ determines the strain rate at which the model transitions from rate-independent 

to rate-dependent behavior, m is the rate sensitivity parameter and, the term inside the hyperbolic sine 

function called the plastic potential Φ  function is defined by  

)71(  ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−Ξ=Φ 1

κχ

eff
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and effΞ the magnitude of a second rank tensor including the deviatoric part of the Piola-Kirchhoff stress 

and the back stress defined below 

)72(  Ξ=Ξ
2
3eff  

)73(  ζdevSdev −=Ξ  

)74(  )S(trSSdev
3
1−=  

)75(  )(trdev ζζζ
3
1−=  

Two terms in the denominator of equation (71) are κ  and χ  that are for stress like parameter related to 

the dislocation density (equation 32) and directional distortion (eq.76). 

The directional distortion is defined based on the cosine series as 

)76(  ηηηηχ 4321 4321 cosacosacosacosa ++++=  

The angles in the cosine series is calculated from the angle between the stress tensor Ξ  and the structure 

tensor A  (Regueiro et al. 2001). Similar treatment in term of the distortional yield surface is shown by 

Ortiz and Popov (1983) 

)77(  A
A:cos

Ξ
Ξ=η

 

Since there is no flow surface defined for this model, the plastic potential function Φ  is used to define the 

direction of the plastic flow. The direction of plastic flow 
pN  derived as 

)78(  
⎟⎟⎠

⎞
⎜⎜⎝

⎛
Ξ∂
Φ∂

⎟⎟⎠

⎞
⎜⎜⎝

⎛
Ξ∂
Φ∂= symsymN p

 

)79(  
⎟⎟⎠

⎞
⎜⎜⎝

⎛
Ξ∂
∂Ξ−

Ξ∂
Ξ∂=⎟⎟⎠

⎞
⎜⎜⎝

⎛
Ξ

Ξ∂
∂−

Ξ∂
Ξ∂=

⎟⎟⎠

⎞
⎜⎜⎝

⎛
Ξ

Ξ∂
∂−

Ξ∂
Ξ∂=Ξ∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−Ξ∂=

Ξ∂
Φ∂

χ
χκχ

χ
χκχ

κχχκκχ
κχ

effeff
eff

eff

eff
effeff

)(

111

1 2
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Where χ  and κ are scalars.  

)80(  ⎟⎟⎠

⎞
⎜⎜⎝

⎛
Ξ∂
∂Ξ−

Ξ∂
Ξ∂

⎟⎟⎠

⎞
⎜⎜⎝

⎛
Ξ∂
∂Ξ−

Ξ∂
Ξ∂=⎟⎟⎠

⎞
⎜⎜⎝

⎛
Ξ∂
Φ∂

⎟⎟⎠

⎞
⎜⎜⎝

⎛
Ξ∂
Φ∂= χ

χκχ
χ

χκχ

effeffeffeff
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where these relations are hold  
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4. Summary 

The constitutive equation can be summarized as 

Kinematics: 

)85(  ep lll +=, ppp WDl +=  

Elastic law: 
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Flow rule: 
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Plastic potential: 
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Texture evolution: 
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Hardening rule: 
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