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Abstract

Computing tasks may often be posed as optimization problems. The objective
functions for real-world scenarios are often nonconvex and/or nondifferentiable.
State-of-the-art methods for solving these problems typically only guarantee con-
vergence to local minima. This work presents Hamilton-Jacobi-based Moreau
Adaptive Descent (HJ-MAD), a zero-order algorithm with guaranteed convergence
to global minima, assuming continuity of the objective function. The core idea is to
compute gradients of the Moreau envelope of the objective (which is “piece-wise
convex”) with adaptive smoothing parameters. Gradients of the Moreau envelope
(i.e. proximal operators) are approximated via the Hopf-Lax formula for the viscous
Hamilton-Jacobi equation. Our numerical examples illustrate global convergence.

1 Introduction

Nonconvex Function f

Moreau Envelope u(x50, t50)

Samples of f to Update x50

Minimizer Estimate x50

Initial Estimate x1
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Figure 1: The iterates {xk} generated by HJ-MAD
converge to a global minimizer of f (black) via
gradient descent on Moreau envelopes (blue).

Standard data-oriented tasks such as neural net-
work training, parameter estimation in physical
models, and phase recovery may be cast as op-
timization problems. These problems are often
highly non-convex, and practical schemes to
solve for global minimizers are scarce. State-of-
the-art methods are often either impractical [39],
heuristic [36, 44], or only guarantee conver-
gence to local minima [10, 25].

In this work, we introduce a zero-order algo-
rithm with guaranteed convergence to global
minima. Our approach minimizes Moreau en-
velopes of objective functions (e.g. see Fig-
ure 1). To compute gradients of the Moreau
envelope, we leverage a connection to Hamilton-Jacobi (HJ) partial differential equations (PDEs) via
the Hopf-Lax formula. This yields an explicit solution to the HJ equation from the Cole-Hopf formula,
giving the name Hamilton-Jacobi-based Moreau Adaptive Descent (HJ-MAD). These gradients take
the form of expectation formulas that can be estimated via sampling.

Contribution Our key contributions for global minimization of nonconvex functions are as follows.

I Present Moreau Adaptive Descent (MAD), a zero-order method for minimization.
I Prove function value convergence by MAD to the global minimum value.
I Connect MAD to an inviscid Burgers’ HJ equation, with adaptive time steps.
I Efficiently approximate Moreau envelopes and proximals using viscous HJ equations.

Preprint. October 7, 2022. Codes and animations available at github.com/mines-opt-ml/hj-global-opt.
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Algorithm 1 Moreau Adaptive Descent (MAD)

1: MAD(x1, α, τ, t1, T ) : C Input parameters
2: for k = 1, 2, . . . C Loop until convergence
3: x̂k ∈ proxtkf (xk) C Compute local minimizer
4: gk = t−1k (xk − x̂k) C Estimate envelope gradient
5: xk+1 = xk − αktkgk C Gradient update
6: tk+1 = TimeStep(tk, g

k, gk−1; τ, T ) C Evolve time via (14)
7: return xk C Output solution estimate

2 Moreau Adaptive Descent

For a continuous and bounded from below function f : Rn → R, consider the minimization problem

min
x∈Rn

f(x). (1)

Given a time t ∈ (0,∞), the proximal proxtf and Moreau envelope u(·, t) [2, 34] are defined by

proxtf (x) , argmin
z∈Rn

f(z) +
1

2t
‖z − x‖2 and u(x, t) , min

z∈Rn
f(z) +

1

2t
‖z − x‖2. (2)

These quantities are closely tied as the proximal is the set of minimizers defining the envelope. As
shown in Figure 1, the envelope u widens valleys of f and its local minimizers align with local
minimizers of f (see Lemma A.4). Under certain assumptions, increasing the time t dissipates
the envelope enough that all local minimizers of u are global minimizers of f (see Lemma A.6).
Leveraging this fact, we generate a sequence {xk} via gradient descent on the envelope u(·, tk) while
evolving time tk (forward and backward). For practical purposes (discussed in Section 4), time
steps tk are kept relatively small to ensure updates leverage the local landscape of f when possible.
Algorithm 1 presents Moreau Adaptive Descent (MAD) (n.b. time stepping is defined below in (14)).

Typical results for zero-order methods assume f is smooth; yet, MAD does not require such regularity.
Assumption 2.1. The function f : Rn → R is continuous.

The standard first order necessary condition for optimality is∇f = 0. Weaker versions of this are
used when f is merely continuous and nonconvex. We utilize the following definition [16, Section 2],
which generalizes both gradients and the notion of subdifferential common in convex settings.1

Definition 2.1. For a function f : Rn → R, the subdifferential of f at x, denoted by ∂f(x), is the
set of all v ∈ Rn satisfying

f(x) ≥ f(x) + 〈v, x− x〉+ o(‖x− x‖), as x→ x. (3)

We next assume the set of global minima is compact and distinguishable from other extrema.
Assumption 2.2. There is γ > 0 such that

i) the set Sγ , {z ∈ Rn : f(z) ≤ inf f + γ} is compact;

ii) if 0 ∈ ∂f(x) and x ∈ Sγ , then x is a global minimizer of f .

Lastly, we provide restrictions on the step size α and initial time t1, assuming η− ∈ (0, 1).
Assumption 2.3. The MAD parameters satisfy:

i) step size satisfies α ∈ (1−√η−, 1 +
√
η−);

ii) For a global minimizer x? of f , times t1, τ, T ∈ (0,∞) are chosen such that t1 ≥ τ and
T ≥ t1 ≥ ‖x? − x1‖2/2γ, where γ is as in Assumption 2.2.

Combining our assumptions leads to our main result.
Theorem 2.1. (GLOBAL MINIMIZATION) If Assumptions 2.1, 2.2, and 2.3 hold, then the iteration in
Lines 3 to 6 of Algorithm 1 yields convergence to optimal objective values, i.e.

lim
k→∞

f(xk) = min
x∈Rn

f(x). (4)

Additionally, a subsequence {xnk} ⊆ {xk} converges to a global minimizer of f .

1The usual notion of subdifferential removes o(‖x− x‖), instead requiring the inequality to hold for all x, x.
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Algorithm 2 Hamilton-Jacobi Moreau Adaptive Descent (HJ-MAD)

1: HJ-MAD(x1, α, t1, τ, T ) : C Input parameters
2: for k = 1, 2, . . . C Loop until convergence
3: gk ← ∇uδ(xk, tk) C Generate gradient estimate via (15)
4: xk+1 ← xk − αtkgk C Gradient update
5: tk+1 ← TimeStep(tk, g

k, gk−1; τ, T ) C Evolve time via (14)
6: return xk C Output solution estimate

3 Connections to Hamilton-Jacobi PDEs

When the envelope u is differentiable at xk, its gradient is precisely gk (see Lemma A.3), i.e.

gk =
xk − x̂k

tk
= ∇u(xk, tk), where x̂k = proxtkf (xk). (5)

Although the idea to use gradients of u(xk, tk) is simple, computing x̂k and gk can be as difficult
as the original problem (1). This difficulty can be (approximately) circumvented by using a PDE
formulation. The envelope u is a special case of the Hopf-Lax formula [18] for PDEs. It can be
shown (e.g. see [19, Theorem 3.2]) that u is a (weak) solution to Burgers’ Hamilton-Jacobi equation2{

ut +
1

2
‖Du‖2 = 0 in Rn × (0, T ]

u = f on Rn × {t = 0}.
(6)

The key step in obtaining an explicit expression for each subgradient is to approximate the solution
u to (6) by adding a small amount of viscosity via a Laplacian term. Namely, fixing δ > 0, we
approximate solutions to (6) via the solution uδ of the associated viscous Burgers’ equation{

uδt + 1
2‖Du

δ‖2 = δ
2∆uδ in Rn × (0, T ]

uδ = f on Rn × {t = 0}.
(7)

A key result justifying this approximation is that of Crandall and Lyons [12, Theorem 5.1].
Theorem 3.1. If δ, T ∈ (0,∞) and f is bounded and Lipschitz, then there is C ∈ (0,∞) such that

sup
t∈[0,T ]

sup
x∈Rn

∣∣u(x, t)− uδ(x, t)
∣∣ ≤ C√δ. (8)

This establishes uniform convergence uδ → u as δ → 0+. Although f is not necessarily bounded
and Lipschitz continuous on Rn, the sequence {xk} generated by Algorithm 1 is bounded (see
Lemma A.7). Thus, the above result still applies since f is bounded and Lipschitz continuous on a
compact domain containing {xk}. Consequently, for δ > 0 sufficiently small, one is, for all practical
purposes, justified in using Algorithm 2 to estimate solutions to (1).

Using the transformation vδ , exp(−uδ/δ), originally attributed to Cole and Hopf [11, 18], it
follows that vδ solves the heat equation, i.e.{

vδt − δ
2∆vδ = 0 in Rn × (0, T ]

vδ = exp(−f/δ) on Rn × {t = 0}. (9)

This transformation to vδ is of particular interest since vδ can be expressed via the convolution
formula (e.g. see [18] for a derivation)

vδ(x, t) =
(

Φδt ∗ exp(−f/δ)
)

(x), (10)

where Φδt is the fundamental solution to the heat equation, i.e.

Φδt(x) ,

{
(2πδt)−n/2 · exp(− |x|

2

2δt ) in Rn × (0,∞)
0 otherwise.

(11)

2We call (6) Burgers’ since, if lim
|x|→∞

|u| = 0, the original Burgers’ PDE is obtained via integration by parts.

3



Thus, using algebraic manipulations, we recover the viscous Burgers’ solution

uδ(x, t) = −δ ln
(

Φδt ∗ exp(−f/δ)
)

(x) in Rn × (0, T ]. (12)

See Appendix C for an intuitive, informal argument that uδ expressed by (12) converges pointwise to
the envelope u as δ → 0. Moreover, for δ sufficiently small, if u is diffierentiable at (x, t), then

∇u(x, t) ≈ ∇uδ(x, t) = −δ · ∇
[
ln
(
vδ(x, t)

)]
= −δ · ∇v

δ(x, t)

vδ(x, t)
. (13)

Loosely speaking, (13) shows we can approximate gk in Algorithm 1 using convolutions with the
heat kernel Φδt. A more practical formula for the convolutions in (13) is given in Section 5.

4 Time Evolution

To prevent the sequence {xk} from converging to local minima that are not globally optimal, the HJ
equation is evolved in time. The time stepping method we propose is similar in spirit to trust region
methods. If the gradient ∇u is small, then time is increased to get out of non-global local minima. If
the gradient is relatively large, then time is reduced to utilize the local landscape. In mathematical
terms, for 0 < η− < 1 < η+ and 0 < θ1 ≤ θ2 < 1, and ε > 0, the time stepping rule is defined by

TimeStep(t, p, q; τ, T ) ,


min

(
η+t, T

)
if ‖p‖ ≤ θ1‖q‖+ ε

t else if ‖p‖ ≤ θ2‖q‖+ ε

max
(
η−t, τ

)
otherwise.

(14)

Algorithms 1 and 2 evolve time using the above time stepping rule with t = tk, p = gk and q = gk−1.
Remark 4.1. Other updates can be used to generate {tk}. We restrict our presentation to that above
for simplicity. Future work may investigate convergence improvements with other time step rules.

5 Gradient Estimation

Expectation Formulation An essential property of any optimization algorithm is it scales well
with dimension n. At first glance, the expression for∇uδ in (13) consists of two convolutions, which
require evaluating f over all of Rn. This is an intractable task; however, the heat kernel coincides
with the probability density of a Gaussian distribution with mean x and standard deviation

√
δt. This

enables the convolutions to be written as expectations, which can be approximated via sampling (e.g.
see [20] for an overview of sampling methods). Namely, setting Px,t , N (x, δt) yields3

∇uδ(x, t) =
1

t
·

(
x−

Ey∼Px,δt
[
y· exp

(
−δ−1f(y)

)]
Ey∼Px,δt [exp (−δ−1f(y))]

)
. (15)

When t is small, a few samples are needed to adequately estimate the expectation in (15) since the
heat kernel is concentrated for small time. When t is large, many samples are needed. However, it is
worth noting no grids are required when solving the HJ equation [32, 37, 38].

Exponentially Weighted Moving Average To reduce the number of samples needed to adequately
estimate gradients, especially when n and/or t are large, moving averages of gradients can be used.
This allows samples from previous steps to estimate the gradient at the current step. This is similar to
ADAM’s [25] variance reduction, which estimates first moments via a moving average of gradients.

Limitations Some limitations of HJ-MAD require careful consideration. First, since HJ-MAD
relies on smoothing the objective function, it is expected to not perform as well on functions that are
very flat and smooth. Second, while the method is guaranteed to converge to the global minimizer, it
does not necessarily outperform some of the state-of-the-art methods. We simply present a method
with theoretical guarantees, whereas several current methods are mostly heuristic. Finally, as in most
algorithms, the choice of parameters (in this case, time update parameters) is problem-dependent.

3For completeness, we include a brief derivation of this connection in Appendix B.
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6 Related Works

Global Optimization Algorithms Random Search Methods [39] are derivative-free methods that
iteratively move to better positions in the search-space. Pure Random Search (PRS) [6] samples points
from the domain independently and set the point with lowest function value to be the next iterate.
Differential Evolution (DE) [44] uses a population/batch of candidate solutions that are moved
around using a simple formula. If the new position of an agent is an improvement then it is accepted
and forms part of the population, otherwise the new position is simply discarded. The method is
iterative and heuristic. It is similar to PRS and requires many function evaluations. Moreover, there
are no convergence guarantees. Basin-hopping (BH) [36, 46] is a two-phase method that iterates
by performing random perturbation of coordinates, performing local optimization, and accepting or
rejecting new coordinates based on a minimized function value. There are no convergence guarantees.
Simulated Annealing [26] is a stochastic, heuristic method that starts at a randomized point x in the
parameter space, and then evaluates a neighboring point x′, usually chosen at random. In its simplest
form, if the value of the objective function is lesser at the new point, the new point is accepted, and the
process is repeated. If the value at the new point is greater, the point is chosen with some acceptance
probability P ; this allows the currently best point considered by the algorithm to zero in on optima
in f , but to escape local optima. A method with comparable convergence guarantees to our work
is the DIRECT (DIviding RECTangles) [21] method, which partitions a bound-constrained domain
into 2n+ 1 hyper-rectangles with an evaluated point at the centre of each. Each hyper-rectangle is
scored via a combination of the length of its longest side and the function value at its centre. This
scoring favors hyper-rectangles exhibiting both long sides and small function values; the best-scoring
hyper-rectangles are further divided.

Moreau Envelope Minimization Our work relates to entropy gradient descent (EGD) [10, 11],
which fixes a time T for which to compute the Moreau envelope. There gradients of the Moreau en-
velope are approximated using a subroutine involving (stochastic) gradient descent. A key difference
is HJ-MAD is a zero-order method. Moreover, HJ-MAD does not require a subroutine and instead
leverages the Cole-Hopf [18] formula to approximate the gradient via an expectation as in (15). Also,
time is adaptive in HJ-MAD whereas it is fixed in EGD. Another work related to ours is the Bend,
Mix and Release (BMR), which provides a smooth approximation of the Moreau envelope [41] (albeit
without the HJ PDE). Finally, many works also consider minimization of the Moreau envelope, either
for weakly convex functions [14, 15], or escaping saddle points of the Moreau envelope [13].

Zero-Order Algorithms HJ-MAD falls under the category of zero-order methods as it does
not require gradients of f . In fact, HJ-MAD does not require that f be differentiable. Related
methods include the following. Random Gradients [17, 27–29] project gradients onto a random
subspace. ZORO [9] assumes sparsity of the gradient and is aimed at high-dimensional problems.
ZO-BCD [7] provides a sub-linear query and per-iteration computational complexity. NOMAD is a
mesh-adaptive direct search algorithm which are based on progressive-barrier or filter approaches
to deal with constraint inequalities and has similar convergence properties as HJ-MAD [31]. Other
zero-order methods include derivative-free quasi-Newton methods [4, 30, 33], finite-difference-
based methods [42, 43], numerical quadrature-based methods [1, 24], Bayesian methods [30], and
comparison methods [8].

7 Experiments

We test HJ-MAD on a set of non-convex benchmark test functions obtained from the Virtual Library
of Simulation Experiments [45]. All experiments were run via Google Colaboratory [5]. We start by
showing the efficacy of HJ-MAD on the highly nonconvex 2D Griewank function

f(x) , 1 +

n∑
i=1

x2i
4000

−
n∏
i=1

cos

(
xi√
i

)
, (16)

which has many widespread local minima. Optimization paths are shown in Figure 2 for HJ-MAD and
Gradient Descent (GD). For HJ-MAD, we use 100 samples to estimate the derivative of the Moreau
envelope according to (15). As gradient descent is a local optimization algorithm, it converges to a
local minimum while HJ-MAD converges to the global minimizer.

5



HJ-Mad

Gradient Descent

1 25 50 75 100 125

1e-0

1e-2

1e-2

1e-3

1

(a) Objective Value vs. Iteration
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(b) Relative Error vs. Iteration (c) Optimization Paths

Figure 2: Objective values (left), relative errors (center), and optimization paths (right) for HJ-MAD.
HJ-MAD converges to the global minimum while gradient descent converges to a local minimum.

As a more extensive experiment, we compare HJ-MAD with a series of global optimization algo-
rithms mentioned in Section 6. In particular, we compare HJ-MAD with built-in global optimization
algorithms from the Python-based package SciPy [22]. These algorithms include PRS [39], DE [44],
BH [36, 46], and Dual Annealing [26]. These algorithms are tested on a series of non-convex bench-
mark test functions obtained from the Virtual Library of Simulation Experiments [45]. Description of
these functions can be found in [5]. In Table 1, we list the number of function (and gradient if used)
evaluations to get to convergence (i.e. within tolerance 5× 10−2 of the global minimum). Our results
show HJ-MAD converges for every test function.

HJ-MAD PRS DE [44] BH [36] Annealing [26]
Griewank 167 460K N N 451.4K

Drop-Wave 9111 52.5K 1152 N 485.8K
Alpine N.1 635 755.6K N N N

Ackley 498 243.2K 3003 476(116) 3.7M
Levy 5433 N N N N

Rastrigin 500 660.2K 2223 48(12) 590.2K

Table 1: Comparison of global optimization algorithms. Rows show benchmark functions and
columns show algorithms. The number in each box gives used function (and gradient in parenthesis)
evaluations. “N” means the method did not converge. HJ-MAD results are averaged over 30 trials.

8 Conclusion

We propose a Hamilton-Jacobi-based Moreau Adaptive Descent (HJ-MAD) method for finding
global solutions to optimization problems. HJ-MAD is a zero-order algorithm that does not require
differentiable objective functions. Our approach is based on two key ideas. First, we use the
Moreau envelope with sufficiently large time t such that its minimizers are global minimizers of
the objective function. Second, we leverage connections with Hamilton-Jacobi equations to obtain
analytic expressions for the Moreau envelope and its gradient. In particular, we use the Cole-Hopf
and Hopf-Lax formulas to express the gradient of the Moreau envelope as an expectation. To make
the sampling of these expectations more efficient, we include an adaptive time-stepping scheme.
Our work also provides a way to estimate proximal operators, in general, using connections to HJ
equations. In our experiments, HJ-MAD is the most efficient algorithm and always manages to
converge to the global minimizer. Future work may improve the efficiency of HJ-MAD.
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A Proofs

Below a sequence of lemmas is provided to obtain the main result. The first lemma is an elementary
result, a minor tweak on known results (e.g. the early works [34, 35] about proximals being nonempty).

Lemma A.1. Given time t ∈ (0,∞), if Assumptions 2.1 and 2.2 hold for f : Rn → R, then proxtf (x)
is nonempty for all x ∈ Rn.

Proof. Fix x ∈ Rn. Consider the set

T ,

{
z : f(z) +

1

2t
‖z − x‖2 ≤ f(x) + 1

}
. (17)

By Assumption 2.2i and Assumption 2.1, the extreme value theorem asserts f attains its minimum
value on Sγ , and so there is a global minimizer x? of f . Consequently, the constraint in T can be
rewritten to obtain

‖z − x‖2 ≤ 2t(f(x)− f(z) + 1) ≤ 2t(f(x)− f(x?) + 1), (18)

and so T ⊆ B(x, 2t[f(x)− f(x?) + 1]), i.e. T is bounded. Moreover, since x ∈ T , T is nonempty,
and T is closed because f is continuous. Due to the fact the minimal value of f is a lower bound, i.e.

f(z) +
1

2t
‖z − x‖2 ≥ f(x?) for all z ∈ Rn, (19)

the set {
f(z) +

1

2t
‖z − x‖2 : z ∈ Rn

}
(20)

has an infimum. Since x ∈ T , this infimum is less than or equal to f(x). Thus, there exists a sequence
{zk} ⊂ Rn such that

lim
k→∞

f(zk) +
1

2t
‖zk − x‖2 = inf

z∈Rn
f(z) +

1

2t
‖z − x‖2. (21)

By definition of this limit and the fact the infimum does not exceed f(x), there is N ∈ N such that

f(zk) +
1

2t
‖zk − x‖2 ≤

(
inf
z∈Rn

f(z) +
1

2t
‖z − x‖2

)
+ 1 ≤ f(x) + 1, for all k ≥ N , (22)

and so zk ∈ T for k ≥ N . This implies the sequence {zk} is bounded, whereby the
Bolzano–Weierstrass theorem may be applied to deduce existence of a convergent subsequence
{znk} ⊆ {zk} with limit x̂ ∈ T (n.b. T is closed). Then observe

f(x̂) +
1

2t
‖x̂− x‖2 = lim

k→∞
f(znk) +

1

2t
‖znk − x‖2 = inf

z∈Rn
f(z) +

1

2t
‖z − x‖2, (23)

which implies x̂ ∈ proxtf (x), and the proof is complete.
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Below is a nearly trivial result that is also well-known for Moreau envelopes.
Lemma A.2. Given a time t ∈ (0,∞), if Assumptions 2.1 and 2.2 hold for f : Rn → R, then
0 < t ≤ T implies

u(x, T ) ≤ u(x, t) for all x ∈ Rn. (24)

Proof. By Lemma A.1, x̂ ∈ proxtf (x) exists, and we have

u(x, T ) ≤ f(x̂) +
1

2T
‖x̂− x‖2 ≤ f(x̂) +

1

2t
‖x̂− x‖2 = u(x, t), for all x ∈ Rn. (25)

Below is a gradient ∇u(x, t) formula without assuming f is convex. This is a modification of
Proposition 3.1 in [23]. This is a minor extension of a well-known result in convex analysis originating
from Moreau [35] (e.g. see Proposition 12.30 in [2], Theorem 6.60 in [3], and Thereom 31.5 in [40].)
Lemma A.3. Given a time t ∈ (0,∞), if Assumptions 2.1 and 2.2 hold for f : Rn → R and if the
envelope u(·, t) of f is differentiable at x ∈ Rn, then proxtf (x) is a singleton set and

∇u(x, t) =
x− x̂
t

, where x̂ , proxtf (x) = argmin
z∈Rn

f(z) +
1

2t
‖z − x‖2. (26)

Proof. By Lemma A.1, there exists x̂ ∈ proxtf (x). Fix any h ∈ Rn. By definition of the gradient,

〈∇u(x, t), h〉 = lim
λ→0

u(x, t)− u(x− λh, t)
λ

(27a)

= lim
λ→0

f(x̂) + 1
2t‖x̂− x‖

2 − u(x− λh, t)
λ

(27b)

≥ lim
λ→0

f(x̂) + 1
2t‖x̂− x‖

2 − f(x̂)− 1
2t‖x̂− (x− λh)‖2

λ
(27c)

= lim
λ→0

1
t 〈x̂− x,−λh〉 −

1
2t‖λh‖

2

λ
(27d)

=

〈
x− x̂
t

, h

〉
, (27e)

where the equality (27b) holds because x̂ ∈ proxtf (x) and the subsequent inequality (27c) follows
from the fact u(x− λh, t) is the infimum of f(z) + 1

2t‖z − (x− λh)‖2 among all z ∈ Rn. Since
(27) holds for arbitrarily chosen h, this limit inequality holds over Rn. Consequently,〈

∇u(x, t)− x− x̂
t

, z

〉
≥ 0, for all z ∈ Rn. (28)

By way of contradiction, suppose the gradient formula in (26) does not hold, i.e.

∇u(x, t)− x− x̂
t
6= 0. (29)

In such a case, taking

z =
x− x̂
t
−∇u(x, t) (30)

yields

0 ≤
〈
∇u(x, t)− x− x̂

t
, z

〉
= −

∥∥∥∥∇u(x, t)− x− x̂
t

∥∥∥∥2 < 0, (31)

which implies 0 < 0, a contradiction. Thus, (29) must be false, from which the result (26) follows.
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All that remains is to verify x̂ is the unique element of proxtf (x). To this end, fix any ŷ ∈ proxtf (x)
and observe, repeating the same argument as for the gradient formula above,

x− ŷ
t

= ∇u(x, t) =
x− x̂
t

⇐⇒ x̂ = ŷ. (32)

That is, ŷ ∈ proxtf (x) if and only if ŷ = x̂, completing the proof.

The following lemma is again a generalization of well-known results in convex analysis; here again
the proof adapts arguments from [23].
Lemma A.4. Given a time t ∈ (0,∞), if Assumptions 2.1 and 2.2 holds for f : Rn → R and
if x ∈ Rn is a local minimizer of the envelope u(·, t) of f , then x is a local minimizer of f ,
u(x, t) = f(x), x = proxtf (x), u(·, t) is differentiable at x, and

∇u(x, t) = 0. (33)

Proof. Suppose x is a local minimizer of u(·, t). By Lemma A.1, there exists x̂ ∈ proxtf (x). We
first show x = x̂ (Step 1), which implies u(x, t) = f(x). This is used to verify ∇u(x, t) = 0 (Step
2), and we conclude by showing x is a local minimizer of f (Step 3).

Step 1. Fix any h ∈ Rn. Since x is a local minimizer of u, there is λ > 0 such that, for λ ∈ (−λ, λ),

u(x− λh, t) ≤ f(x̂) +
1

2t
‖x̂− (x− λh)‖2 (34a)

= f(x̂) +
1

2t
‖x̂− x‖2 +

〈
x̂− x
t

, λh

〉
+
λ2

2t
‖h‖2 (34b)

= u(x, t) +

〈
x̂− x
t

, λh

〉
+
λ2

2t
‖h‖2. (34c)

Upon rearrangement, we deduce〈
x− x̂
t

, λh

〉
− λ2

2t
‖h‖2 ≤ u(x, t)− u(x− λh, t) ≤ 0, for all λ ∈ (−λ, λ). (35)

This implies

0 ≥ lim
λ→0+

u(x, t)− u(x− λh, t)
λ

≥ lim
λ→0+

〈
x− x̂
t

, h

〉
− λ

2t
‖h‖2 =

〈
x− x̂
t

, h

〉
. (36)

By the arbitrariness of h, we may choose

h =
x̂− x
t

(37)

and apply (36) to find ∥∥∥∥x− x̂t
∥∥∥∥2 ≤ 0 =⇒ x = x̂. (38)

Step 2. Plugging x = x̂ back into (36) furthermore reveals, by the squeeze lemma,

〈∇u(x, t), h〉 = lim
λ→0

u(x, t)− u(x− λh, t)
λ

= 0, for all h ∈ Rn. (39)

Since h was arbitrarily chosen, it follows that∇u(x, t) = 0.

Step 3. By way of contradiction, suppose x is not a local minimizer of f . This would imply existence
of nonzero h ∈ Rn and λ̂ ∈ (0,∞) such that

f(x+ λh) < f(x) for all λ ∈ (0, λ̂). (40)
However, our above results together with the truth of (40) would imply

u(x+ λh, t) ≤ f(x+ λh) +
1

2t
‖(x+ λh)− (x+ λh)‖2 (41a)

= f(x+ λh, t) (41b)
< f(x) (41c)

= u(x, t), for all λ ∈ (0, λ̂), (41d)
contradicting the fact x is a local minimizer of u(·, t). Thus, x is a local minimizer of f .
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The lemma below is widely known in the case where f is convex. For completeness, we include its
adaptation to our setting with a more general subdifferential definition and unique assumptions.
Lemma A.5. Given a time t ∈ (0,∞), if Assumptions 2.1 and 2.2 hold for f : Rn → R and if there
is x ∈ Rn such that f(x) = u(x, t), then 0 ∈ ∂f(x).

Proof. By Lemma A.1, there is x̂ ∈ proxtf (x), and so

f(x̂) +
1

2t
‖x̂− x‖2 ≤ f(z) +

1

2t
‖z − x‖2, for all z ∈ Rn. (42)

By definition of u and the given hypothesis,

f(x) = u(x, t) = f(x̂) +
1

2t
‖x̂− x‖2. (43)

Combining (42) and (43) reveals

f(x) + 〈0, z − x〉 − 1

2t
‖z − x‖2 ≤ f(z), for all z ∈ Rn. (44)

Since ‖z − x‖2 = o(‖z − x‖) as z → x, (44) shows, by Definition 2.1, 0 ∈ ∂f(x).

The next two lemmas are additional auxiliary results we introduce to utilize our unique assumptions.
Lemma A.6. Given a time t ∈ (0,∞), if Assumptions 2.1 and 2.2 hold for f : Rn → R and if
x ∈ Rn is a local minimizer of the envelope u(·, t) of f and t ≥ ‖x − x?‖2/2γ for some global
minimizer x? of f , then x is a global minimizer of f .

Proof. Due to Assumption 2.2i and Assumption 2.1, the extreme value theorem asserts f attains its
minimum value on Sγ , i.e. there is a global minimizer x? of f . By Lemma A.4, f(x) = u(x, t), and

f(x) = u(x, t) ≤ f(x?) +
1

2t
‖x? − x‖2 ≤ f(x?) + γ, (45)

i.e. x ∈ Sγ . By Lemma A.5, 0 ∈ ∂f(x). These facts together with Assumption 2.2ii imply x is a
global minimizer of f .

Lemma A.7. Given a time t ∈ (0,∞), if Assumptions 2.1, 2.2 and 2.3 hold for f : Rn → R and if
the sequence {u(xk, tk)} is monotonically decreasing, then the sequence {xk} is bounded.

Proof. By Assumption 2.3ii, there is global minimizer x? of f . Define the set
Q , {z : u(z, T ) ≤ f(x?) + γ}. We first show Q is bounded (Step 1) and then that
xk ∈ Q for all k ∈ N (Step 2).

Step 1. Since x? is a global minimizer, f is bounded from below. By way of contradiction, suppose
Q is unbounded. This implies there is a sequence {zk} ⊆ Q such that

lim
k→∞

‖zk‖ = +∞. (46)

By Lemma A.1, there is a sequence {ẑk} such that ẑk ∈ proxTf (zk), for all k ∈ N, and

f(ẑk) ≤ f(ẑk) +
1

2T
‖ẑk − zk‖2 = u(zk, T ) ≤ f(x?) + γ =⇒ ẑk ∈ Sγ , (47)

where the final inequality holds since zk ∈ Q. This implies {ẑk} is bounded by B > 0 and

‖ẑk − zk‖2 ≤ 2T
(
f(x?)− f(ẑk) + γ

)
≤ 2Tγ, for all k ∈ N. (48)

Thus,
∞ = lim

k→∞
‖zk‖ ≤ lim

k→∞
‖ẑk‖+ ‖ẑk − zk‖ ≤ lim

k→∞
B +

√
2Tγ, (49)

a contradiction.

Step 2. By the monotonicity of {u(xk, tk)}, Assumption 2.3ii, and Lemma A.2,

u(xk, T ) ≤ u(xk, tk) ≤ u(x1, t1) ≤ f(x?) +
1

2t1
‖x? − x1‖2 ≤ f(x?) + γ, for all k ∈ N, (50)

which implies {xk} ⊆ Q.
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The following lemma is a novel result using the assumptions of our setting; it draws inspiration from
inequalities in the analysis in Theorem 2.1 of [14].
Lemma A.8. Given a time t ∈ (0,∞), if Assumptions 2.1, 2.2 and 2.3 hold for f : Rn → R and
if {xk} is generated by the iteration in Lines 3 to 6 of Algorithm 1, then the sequence {u(xk, tk)}
monotonically decreases and converges and there is µ > 0 such that

u(xk+1, tk+1) ≤ u(xk, tk)− µ

2
‖xk − x̂k‖2, for all k ∈ N, (51)

where x̂k ∈ proxtkf (xk) for all k ∈ N.

Proof. By Lemma A.1, there is x̂k ∈ proxtkf (xk) for all k ∈ N. Additionally, for all k ∈ N,

u(xk+1, tk+1) ≤ f(x̂k) +
1

2tk+1
‖x̂k − xk+1‖2 (52a)

= f(x̂k) +
1

2tk+1
‖x̂k − xk + αtkg

k‖2 (52b)

= f(x̂k) +
(1− α)2

2tk+1
‖xk − x̂k‖2 (52c)

= u(xk, tk) +
1

2

(
(1− α)2

tk+1
− 1

tk

)
︸ ︷︷ ︸

,ξk

‖xk − x̂k‖2, (52d)

where ξk is defined to be the underbraced quantity. The first inequality above follows from the
definition of u and the second equality holds by definition of the update formula for {xk}. We next
show ξk is bounded from above by a negative constant. Define the sequence {θk} ⊂ (0,∞) by

θk ,
tk+1

tk
, for all k ∈ N. (53)

Note η− is a lower bound for {θk} and, by the choice of step size in Assumption 2.3, (1−αk)2 < η−.
Thus, there is µ ∈ (0, 1/T ) such that (1− α)2 ≤ (1− µT )η− and

θk ≥ η− ≥
(1− α)2

1− µT
≥ (1− α)2

1− µtk
, for all k ∈ N, (54)

which implies

1− µtk ≥
(1− α)2

θk
=⇒ −µ ≥ 1

tk

(
(1− α)2

θk
− 1

)
=

(1− α)2

tk+1
− 1

tk
, for all k ∈ N. (55)

Together (52) and (55) imply

u(xk+1, tk+1) ≤ u(xk, tk)− µ

2
‖xk − x̂k‖2, for all k ∈ N, (56)

i.e. {u(xk, tk)} is monotonically decreasing. Then (51) follows from induction on (56). Additionally,
Assumption 2.3 implies there is a global minimizer x? of f . Whence

−∞ < f(x?) ≤ inf
x
f(x) +

1

2tk
‖x− xk‖2 = u(xk, tk), for all k ∈ N. (57)

By monotone convergence theorem, the sequence {u(xk, tk)} converges.

We conclude this section below with our main contribution, a convergence theorem.
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Theorem 2.1. (GLOBAL MINIMIZATION). If Assumptions 2.1, 2.2, and 2.3 hold, then the iteration
in Lines 4 to 7 of Algorithm 1 yields convergence to optimal objective values, i.e.

lim
k→∞

f(xk) = min
x∈Rn

f(x). (58)

Additionally, a subsequence {xnk} ⊆ {xk} converges to a global minimizer of f .

Proof. We first show there is a subsequence {xnk} ⊆ {xk} with limit x∞ (Step 1). Then we show
‖xk − x̂k‖ → 0, where x̂k ∈ proxtkf (xk) (Step 2). This is used to verify tk → T in finitely many
steps (Step 3). These facts are together used to show u(x∞, T ) = f(x∞) (Step 4). This, in turn, is
used to verify x∞ is a global minimizer of f (Step 5) and u(xk, T )→ f(x∞) (Step 6). We conclude
by showing convergence of the function values {f(xk)} to f(x∞) (Step 7).

Step 1. By Lemma A.8, {u(xk, tk)} converges monotonically (i.e. is decreasing) and there is µ > 0
and a sequence {x̂k} such that (51) holds and x̂k ∈ proxtkf (xk) for all k ∈ N. The monotonicity
of {u(xk, tk)} with Lemma A.7 implies {xk} is bounded. Thus, there is a convergent subsequence
{xnk} ⊆ {xk} with limit x∞.

Step 2. Due to Assumption 2.3ii, there is a global minimizer x? of f , which implies f is bounded
from below. If

∞∑
n=1

‖xn − x̂n‖2 = +∞, (59)

then (51) implies

f(x?) = min
x∈Rn

f(x) ≤ lim
k→∞

u(xk, tk) ≤ lim
k→∞

u(x1, t1)− µ

2

∞∑
n=1

‖xn − x̂n‖2 = −∞, (60)

contradicting the fact f is bounded from below. Thus, the series in (59) is finite. Because the sequence
{‖xn − x̂n‖} is also nonnegative, it further follows that

lim
k→∞

‖xk − x̂k‖ = 0. (61)

Step 3. Note {T/tk} ⊂ [1, T/τ ] by the choice of time step rule in (14) and, by (61),

0 = lim
k→∞

T

tk
‖xk − x̂k‖ = T lim

k→∞
‖gk‖ =⇒ lim

k→∞
‖gk‖ = 0, (62)

which implies

0 ≤ lim
k→∞

‖gk‖
θ1‖gk−1‖+ ε

≤ lim
k→∞

‖gk‖
ε

= 0. (63)

Consequently, by (14), there exists N1 ∈ N such that

tk+1 = TimeStep(tk, g
k, gk−1) = min(T, η+tk), for all k ≥ N1, (64)

and so there exists N2 ≥ N1 such that

tk = T, for all k ≥ N2. (65)

Thus, tk → T in finitely many steps.

Step 4. By (61) and the fact xnk → x∞,

0 ≤ lim
k→∞

‖x̂nk − x∞‖ ≤ lim
k→∞

‖x̂nk − xnk‖+ ‖xnk − x∞‖ = 0 + 0, (66)

and so the squeeze lemma asserts x̂nk → x∞. Fix any β > 0. Then the convergence of {x̂nk}
implies there is N3 ∈ N such that

|f(x∞)− f(x̂nk)| ≤ β, for all k ≥ N3. (67)

By Lemma A.1, there is x̂∞ ∈ proxtf (x∞). So, the convergence of {xnk} and continuity of scalar
products also implies there is N4 ∈ N such that∣∣‖xnk‖2 − ‖x∞‖2 − 2 〈x̂∞, xnk − x∞〉

∣∣ ≤ 2Tβ, for all k ≥ N4. (68)
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Together (65), (67), (68) and the definition of u imply, for all k ≥ max(N2, N3, N4),
f(x∞) ≤ f(x̂nk) + β (69a)

≤ u(xnk , tnk) + β (69b)
= u(xnk , T ) + β (69c)

≤ f(x̂∞) +
1

2T
‖x̂∞ − xnk‖2 + β (69d)

= u(x∞, T ) +
1

2T

[
‖xnk‖2 − ‖x∞‖2 − 2 〈x̂∞, xnk − x∞〉

]
+ β (69e)

≤ u(x∞, T ) + 2β. (69f)
Hence

u(x∞, T ) ≤ f(x∞) ≤ u(x∞, T ) + 2β. (70)
Since this holds for arbitrary β > 0, we may let β → 0+ to deduce f(x∞) = u(x∞, T ).

Step 5. Using the convergence of {x̂nk} and monotonicity of {u(xk, tk)},
f(x∞) = lim

k→∞
f(x̂nk) ≤ lim

k→∞
u(xnk , tk) ≤ u(x1, t1). (71)

With Assumption 2.3ii, (71) reveals

f(x∞) ≤ u(x1, t1) ≤ f(x?) +
1

2t1
‖x? − x1‖2 ≤ f(x?) + γ. (72)

Additionally, by Lemma A.5 and Step 4, 0 ∈ ∂f(x∞). These last two results together with Assump-
tion 2.2ii imply x∞ is a global minimizer of f .

Step 6. Next we show u(xk, T )→ f(x∞). Since
f(x∞) = lim

k→∞
f(x̂nk) ≤ lim

k→∞
u(xnk , tnk) ≤ lim

k→∞
f(xnk) = f(x∞), (73)

u(xnk , tk) → f(x∞). As tk → T in finitely many steps, u(xnk , T ) → f(x∞). Because
{u(xnk , T )} ⊆ {u(xk, T )} and {u(xk, T )} converges,4 the unique limit of the entire sequence
must coincide with the limits of subsequences, i.e. u(xk, T )→ f(x∞).

Step 7. Let ε > 0 be given. It suffices to show there is N ∈ N such that

f(xk) ≤ f(x∞) + ε, for all k ≥ N . (74)

Since u(xk, T )→ f(x∞), there is N5 ∈ N such that

f(x̂k) ≤ u(xk, T ) ≤ f(x∞) + min
(
γ,
ε

2

)
, for all k ≥ N5. (75)

By the continuity of f (i.e. Assumption 2.1) and Assumption 2.2i, f is uniformly continuous5 on the
set Cγ , {z : d(z,Sγ) ≤ 1}. Thus, there is δ > 0 such that, for all x, y ∈ Cγ ,

‖x− y‖ ≤ δ =⇒ |f(x)− f(y)| ≤ ε

2
. (76)

Since ‖xk − x̂k‖ → 0, there is N6 ∈ N such that

‖xk − x̂k‖ ≤ min (δ, 1) , for all k ≥ N6. (77)

So, (75) implies x̂k ∈ Sγ ⊂ Cγ for all k ≥ N5, and (77) implies xnk ∈ Cγ for all k ≥ max(N5, N6).
Additionally, (75), (76), and (77) together yield

f(xk) ≤ f(x̂k) +
ε

2
(78a)

≤ f(x̂k) +
1

2T
‖x̂k − xk‖2 +

ε

2
(78b)

= u(xk, T ) +
ε

2
(78c)

≤ f(x∞) + ε, for all k ≥ max(N5, N6), (78d)
which verifies (74), taking N = max(N5, N6).

4This holds since {u(xk, tk)} converges and u(xk, tk) = u(xk, T ) for k ≥ N2.
5The set Sγ is compact and, given the continuity of d(z,Sγ) , inf{‖z − x‖ : x ∈ Sγ} and boundedness of

Sγ , the set Cγ is also compact.
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B Derivation of Gradient Formula as Expectation

Recall from (13) that the gradient of the viscous HJ solution is

∇uδ(x, t) = −δ · ∇
[
ln
(
vδ(x, t)

)]
= −δ · ∇v

δ(x, t)

vδ(x, t)
, (79)

where the heat equation solution vδ can be rewritten in the form

vδ(x, t) =
(

Φδt ∗ exp(−f/δ)
)

(x) (80)

= (2πδt)−n/2
∫
Rn

exp

(
−f(y)

δ

)
exp

(
−(x− y)2

2δt

)
dy (81)

= Ey∼Px,δt
[
exp

(
−f(y)

δ

)]
. (82)

Here, we have re-written the integral as an expectation, noting (81) contains the heat kernel, which
could be re-written as a Gaussian density with mean x and standard deviation

√
δt. Differentiating

vδ with respect to x, we obtain

∇vδ(x, t) = (2πδt)−n/2
∫
Rn

x− y
δt

exp

(
−(x− y)2

2δt

)
exp

(
−f(y)

δ

)
dy (83)

= − 1

δt
· Ey∼Px,δt

[
(x− y) exp

(
−δ−1f(y)

)]
. (84)

Plugging these definitions of vδ and ∇vδ in (13), we obtain the desired formula in (15).

C Convergence of (12) to Moreau Envelope

Prior work has already established the uniform convergence uδ → u as δ → 0+. Below we expand
the convolution definition and rewrite uδ using an Lp norm. Fixing x ∈ Rn and t > 0 and defining

qt(y) , f(y) +
1

2t
‖y − x‖2, (85)

note

uδ(x, t) = −δ ln

(
(2πδt)−n/2

∫
Rn

exp

(
−f(y)

δ

)
exp

(
−‖x− y‖2

2δt

)
dy
)

(86a)

=
δn

2
ln(2πδt)− ln

([∫
Rn

exp

(
−2tf(y) + ‖x− y‖2

2δt

)
dy
]δ)

(86b)

=
δn

2
ln(2πδt)− ln

[∫
Rn

exp

(
−
[
f(y) +

1

2t
‖x− y‖2

])1/δ

dy

]δ (86c)

=
δn

2
ln(2πδt)− ln

([∫
Rn

exp (−q(y))
1/δ dy

]δ)
(86d)

=
δn

2
ln(2πδt)− ln

(
‖ exp(−qt)‖L1/δ(Rn)

)
. (86e)

As δ → 0+, the first term vanishes via L’Hôpital’s rule and the Lp norm becomes an L∞ norm, i.e.

u0
+

(x, t) = 0− ln
(
‖exp (−qt)‖L∞(Rn)

)
(87a)

= 0− ln

(
sup
y∈Rn

exp (−qt(y))

)
(87b)

= 0− ln

(
exp

(
− inf
y∈Rn

qt(y)

))
(87c)

= inf
y∈Rn

f(y) +
‖x− y‖2

2t
, (87d)

which is the desired limit.
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